
AFRL-HE-WP-TR-2006-0123

A REVIEW AND REAPPRAISAL OF ADAPTIVE
HUMAN-COMPUTER INTERFACES IN COMPLEX

CONTROL SYSTEMS

Waldemar Karwowski
Center for Industrial Ergonomics

University of Louisville
Louisville, Kentucky 40292-2001

Michael Haas

Human Effectiveness Directorate
Warfighter Interface Division

Wright-Patterson AFB, Ohio 45433-7022

Gavriel Salvendy
School of Industrial Engineering

Purdue University
West Lafayette, Indiana 47907-2023

August 2006

Interim Report from the period May 2003 to January 2004

Air Force Research Laboratory
Human Effectiveness Directorate
Warfighter Interface Division
Collaborative Interfaces Branch
Wright Patterson AFB OH 45433

 Approved for public release;
 Distribution is unlimited.

NOTICE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report was cleared for public release by the Air Force Research Laboratory Wright Site
(AFRL/WS) Public Affairs Office (PAO) and is releasable to the National Technical Information
Service (NTIS). It will be available to the general public, including foreign nationals.

National Technical Information Service
5285 Port Royal Road, Springfield VA 22161

Federal Government agencies and their contractors registered with Defense Technical
Information Center should direct requests for copies of this report to:

Defense Technical Information Center
8725 John J. Kingman Rd., STE 0944, Ft Belvoir VA 22060-6218

TECHNICAL REVIEW AND APPROVAL

AFRL-HE-WP-TR-2006-0123

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION.

FOR THE DIRECTOR

//signed//

DANIEL G GODDARD
Chief, Warfighter Interface Division
Air Force Research Laboratory

This report is published in the interest of scientific and technical information exchange and its publication
does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)
1 Aug 2006

2. REPORT TYPE
Interim

3. DATES COVERED (From - To)
May 2003 – January 2006

5a. CONTRACT NUMBER
In-House

5b. GRANT NUMBER

4. TITLE AND SUBTITLE
A review and reappraisal of adaptive human-computer interfaces
in complex control systems

5c. PROGRAM ELEMENT NUMBER
62202F
5d. PROJECT NUMBER
7184

5e. TASK NUMBER
08

6. AUTHOR(S)
Waldemar Karwowski*
Michael Haas**
Gavriel Salvendy***

5f. WORK UNIT NUMBER
72

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Louisville* Purdue University***
Louisville KY 40292 West Lafayette IN 47907

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)
AFRL/HECP

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Materiel Command**
Air Force Research Laboratory
Human Effectiveness Directorate
Warfighter Interface Division
Collaborative Interfaces Branch
Wright Patterson AFB OH 45433-7022

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-HE-WP-TR-2006-0123

12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.
13. SUPPLEMENTARY NOTES
 AFRL/PA Cleared 12-30-03, AFRL/WS 03-3297.
14. ABSTRACT
This report reviews literature through 2003 on the design of adaptive human-computer interfaces for the control of complex systems
and their application in a variety of domains, including control of technological systems, process control, aviation systems, flight
navigation, database design and management, and computer software development and utilization. It is concluded that a significant
portion of the current application literature focuses on the user-model construction, the control mechanisms, and technical aspects of
the interface architecture. The cognitive aspects of the user-model that are utilized to drive system adaptation are in most cases
intuitive and underdeveloped. Also, human information perception and cognitive processing is seldom considered in the design of
adaptive human-computer interfaces. Application of soft computing methodologies and techniques is one of the more promising new
approaches in this area of research.

15. SUBJECT TERMS
Adaptive Interfaces, crew systems, HCI, HMI, control, adaptive functional allocation

16. SECURITY CLASSIFICATION OF:

19a. NAME OF RESPONSIBLE PERSON
Dr. Michael W. Haas

a. REPORT
U

b BSTRACT . A
U

c. THIS PAGE
U

17. LIMITATION OF
ABSTRACT

SAR

18. NUMBER
OF PAGES

 108

19b. TELEPONE NUMBER (Include area code)

Standard Form 298 (Rev. 8-98)
 Prescribed by ANSI-Std Z39-18

i

This page intentionally left blank.

ii

Table of Contents

1. INTRODUCTION……………………………………………………………………………..1
1.1 Adaptive Systems, Automation, Control, and Interfaces...…………….…….….……..1

2. ADAPTIVE INTERFACES IN AVIATION…………………………………………………….........4
2.1 Dynamic Adaptive Interfaces in Aircraft Systems……..…………………………...…..4
2.2 Adaptive multi-sensory Displays in Simulated Flight………………………………..…5
2.3 Adaptive Pilot-Vehicle Interface……………………………………………………...…..6
2.4 Adaptive Interface for Terrain Navigation…………………………………………..……9

3. ADAPTIVE INTERFACES FOR SUBMARINES…………………………………………...……..11

4. ACTIVE USER COLLABORATIVE INTERFACES…….……………………………………….....12
4.1 Adaptive Interfaces for Control of Mental Workload……………………………… …12
4.2 Active User-interface Paradigm………………………………………………..……….13

5. BRAIN-BASED ADAPTIVE COMPUTER INTERFACES……………………………………….….15
5.1 Asynchronous Adaptive Brain Interface……………………………………………… .15
5.2 EEG-based Interfaces…………………………………………………………………...16
5.3 Interfaces with On-line Self Adaptivity………………………………………….………17

6. INTERFACES FOR ADAPTIVE CONTROL SYSTEMS…….……………………………………...21
6.1 Fuzzy Logic Applications……………………………………………………………..….21
6.2 Neural Network Applications………………………………………………………...….31
6.3 Application of Genetic Algorithms..…..……34
6.4 Hybrid Intelligent Control Systems………………………………………………….…..36
6.5 Classical Techniques in Adaptive Flight Controls…………………………………….41

7. NEURO-FUZZY BASED ADAPTIVE INTERFACE……………………………………………..…42
7.1 Fighter Pilot Cognition and Artificial Neural Networks………………………………..42
7.2 Cognitive Filter/ Mission Tactical Skills…………………………………………...……43
7.3 Interactive Adaptive Interface and Fuzzy Reasoning…………………………..…….45
7.4 Visual Perception and fuzzy-neural Networks……………………………………..….47
7.5 Synthetic Vision and Fuzzy Clustering…………………………………………………48

8. INTELLIGENT INTERFACES FOR PROCESS CONTROL………..………………………………49
8.1 Interactive Interface for Process Monitoring…………………………………………..49

9. INTELLIGENT INTERFACES: APPLICATIONS………………………….………………………50
9.1 Decisional Module of Imagery……………………………………………………….….50
9.2 Adaptive Information Presentation………………………………………………….…..51

iii

9.3 Intelligent Interfaces for Supervisory Control……………………………………….…53
9.4 Intelligent Interfaces for Large-scale Systems…………………………………….….54
9.5 System Interfaces that Adapt to Human Mental State……………………………….56

10. ADAPTIVE DECISION MANAGEMENT SYSTEMS…..………………………………….……..58
10.1 Adaptive Decision Support……………………………………………………………58
10.2 Adaptive Interfaces Based on Function Allocation…………………………………62
10.3 Adaptive Interfaces Based on Distributed Problem Solving……………………….63

11. GRAPHICAL INTERFACES FOR AVIATION SYSTEMS………..……………………………….64
11.1 Interface for Flight Management System…………………………………………..…64
11.2 A Multi-windows Flight Management System…………………………………….….65
11.3 A Navigation Hazard Information System………………………………………….…66
11.4 Elastic Windows Interface……………………………………………………………...66
11.5 Adaptive Interfaces in Tele-operations…...……………………………………….......67
11.6 Adaptive Interfaces for Driving……………………………………………………...…68

12. ADAPTIVE INTERFACES FOR COMPUTER DATABASE APPLICATIONS……..…………… ….69
12.1 Visual Access Interfaces…………………………………………………………….…69
12.2 Adaptive Interface for Generic Expert System……………………………………….71
12.3 The PUSH Project………………………………………………………………………72
12.4 Integrated Interfaces for Web-based Applications…………………………………..72
12.5 Adaptive Hypermedia Applications……………………………………………………75
12.6 Auto-adaptive Multimedia Interfaces………………………………………………….77
12.7 Adaptive Interfaces for Knowledge Retrieval Systems…………………………..…79
12.8 Adaptive Interfaces for Medical Data Management…………………………………80
12.9 Adaptive User Interfaces for Stock Trading………………………………………….81

13. CONCLUSIONS………………….………………………………………………………….85

14. REFERENCES…………………….…………………………………………………………87

APPENDIX A……………………………………………………………..………………………96

APPENDIX B………………………………………………………..……………………………98

APPENDIX C……………………………………………………………………………………100

APPENDIX D……………………………………………………………………………………101

iv

LIST OF FIGURES

Figure 1 - Situation-Driven Adaptive Interface (modified after Mulgund and Zacharias,1996)………………7

Figure 2 – PESKI Architecture (after Santos, 1999)……………………………………………………………14

Figure 3 - Basic neural network architecture for the SB model (after Vico et al. 2001)……………….……18

Figure 4 – Overall network architecture (Vico, 2001)………………………………………………………..…20

Figure 5 - General construction of a fuzzy logic controller (after Zhou et al. 1997)…………………………22

Figure 6 - Fuzzy logic controller for hypersonic aircraft (after Zhou et al. 1997)………………………….…22

Figure 7 - Block diagram of the fuzzy logic controller (after Schram et al. 1997)……………………………23

Figure 8 - The ASRT configuration (after Vachtsevanos et al. 1997)…………………………………………24

Figure 9 - Flow chart of the route planner (after Vachtsevanos et al. 1997)…………………………………25

Figure 10 - Block diagram of the virtual flight data recorder (after Napolitano et al. 1999)……………...…26

Figure 11 - Preprocessing of pilot induced oscillation (PIO) (after Jeram and Prasad, 2003)…………..…28

Figure 12 - Overall architecture of the agent based hierarchical system (after Rong (2002)………………30

Figure 13 - Neural network and phase identification (after Caldwell et al. 1998)……………………………31

Figure 14 - Application of neural network in IFCS design (after Urnes et al. 2001)…………………………33

Figure 15 - Closed loop attitude and trajectory control model (after Austin and Jacobs, 2001)………...…35

Figure 16 - Block diagram of the NN closed loop system (after Zein-Sabatto and Zheng 1997)……….…37

Figure 17 - Altitude controller architecture system (after Zein-Sabatto and Zheng, 1997)…………………37

Figure 18 - Adaptive neuro-fuzzy-fractal controller (after Melin and Castillo, 2002)…………………..……39

Figure 19 – Situation Awareness Data Flow (after Smith, 1991)…………………………………………...…43

Figure 20 – Database of Pilot Model (after Smith 1991)…………………………………………………….…44

Figure 21 – Network Hierarchy (after Smith 1991)………………………………………………………...……45

Figure 22 – The concept of a interactive adaptive interface (after Arai, 1993)………………………………46

Figure 23 – Overall schematic structure of the AVID system (after Hungenahally, 1995)………………….48

Figure 24 – Electronic co-pilot concept (after Korn and Hecker, 2002)………………………………………49

Figure 25 – The interactive adaptive interface (after Arai, 1993)…………………………………………..…50

Figure 26 – The Kolski inference engine (after Kolski, 1993)……………………………………………….…52

Figure 27 - High-level architecture (after Begg (1994)…………………………………………………………54

Figure 28 - COSFAH system architecture (after Yoon and Kim (1996)…………………………… …...……55

Figure 29 – The architecture of a mutual adaptive interface (after Takahashi, 1994)………………………57

Figure 30 - The configuration of adopted neural network (after Takahashi et al. 1994)……………………58

Figure 31 – The ADSS architecture (after Faziollahi, 1997)………………………………………………...…60

Figure 32 - Example tree (after Fazlollahi et al. 1997)……………………………………………………….…62

Figure 33 - System architecture (after Yoneda et al. 1996)………………………………………………...…68

Figure 34 – Architecture of the Adaptive Stick Trader (after Yoo, 2003)…………………………………..…82

Figure 35 – Example of fixed structure of user model...84

v

1. INTRODUCTION

 This report reviews the recent literature on the design of adaptive human-computer

interfaces for control of complex systems and their application in a variety of domains,

including control of technological systems, process control, aviation systems, flight

navigation, database design and management, and computer software development and

utilization. According to Rothrock (2002), an adaptive interface autonomously adapts its

displays and available actions to current goals and abilities of the user by monitoring user

status, the system task, and the current situation. In other words, an adaptive user interface
aims to adapt itself to the characteristics of individual users and their specific ways of

performing tasks while using an application system (Kühme, 1993; Houlier, Grau and Valot,

2003). It is widely accepted that such an adaptation requires the interface to maintain

embedded models of users and tasks. It should also be noted that the adaptive interface

acts primarily as an intelligent intermediary that dynamically allocates the tasks and task

components to either system or operator (Morris, Rouse and Ward, 1988; Chignell and

Hancock, 1988; Frey, Rouse and Garris, 1992).

1.1 Adaptive systems, automation, control, and interfaces
Despite the long history of research on adaptive control and considerable practical

success of adaptive strategies, a satisfactory definition of adaptation remains elusive (Rouse,

1988, 1990; Zames, 1998; Hettinger and Haas, 2003). According to Wickens (1992), adaptive

systems are those in which some characteristic of the system changes or adapts, usually in

response to measured or inferred characteristics of the human user. Adaptive systems are

systems, which can alter aspects of their structure, functionality or interface in order to

accommodate the differing needs of individuals or groups of users and the changing needs of

users over time (Benyon 1987; Andes and Rouse., 1992). A common idea is that adaptation

occurs when parameters inside a controller vary in response to changes in the environment.

According to Zames (1998), there is no clear separation between the concepts of adaptation

and nonlinear feedback, or between research on adaptive control and nonlinear stability.

The other two important ideas in the context of this review are the concepts of adaptive

automation and adaptive interfaces. Hilburn, Parasuraman, and Mouloua (1995) define adaptive

automation as the real-time allocation of functions between human operator and automated

system. According to Parasuraman (2002), the adaptive automation involves the human-

computer systems in which the “division of labor” and/or the interface between human and

machine agents is not fixed at system design, but can vary dynamically during system operations.

An adaptive interface is one where the appearance, function or content of the interface can be

1

changed by the interface (or the underlying application) itself in response to the user’s interaction

with it (Keeble and Macredie, 2000). Rouse, Geddes, and Curry (1988) defined an adaptive

interface from a goal-oriented perspective. The reason for its existence is for the operator to

remain in control and be provided with aiding that adapts to current needs and capabilities, in

order to utilize human and computer resources optimally and, thereby, enhance overall

performance.

Other definitions of adaptive interfaces differ due to their intended primary application.

For example, according to Hettinger (2003), an adaptive interface consists of an ensemble of

displays and controls whose features can be made to change in real time in response to

variations in parameters indexing the state of the user—either some internal state, such as level

of cognitive workload or engagement in a particular task

(e.g. Pope et al., 1995), and/ or a relevant external task-related condition, such as the nature,

number and priority of tasks to be performed within a given unit of time (e.g.

Mulgund et al., 2002). According to Arai et al. (1993), an interactive adaptation interface is the

interface that is changing according the given task considering the user features such as skill

level, techniques, characteristics, physical condition, etc.

An adaptive support system facilitates the human decision-making judgments by adapting

support to the high-level cognitive needs of the users, task characteristics, and decision contexts

(Fazlollahi et al., 1997). Langley (1998) stated that adaptivity is a software artifact that improves

its ability to interact with a user by constructing a user model based on partial experience with

that user. The term active user interface has also been used in the subject literature. According to

Brown and Santos (1999), the active user interfaces serve as actuators in the human-machine

interface, and allows the user to interact with the computer in a naturalistic/symbiotic manner.

Furthermore, an intelligent interface was defined as smoothly changing its behavior to fit with

users’ knowledge, abilities and preferences, usually with advanced dialogue (and multimodal),

capabilities (Hook, 1998). According to Takahashi et al. (1994) an adaptive interface is an

intelligent interface that can accommodate the form of human machine interaction according to

the mental and physical state of operator.

Finally, Soulard (1992) has introduced the concept of the self-adaptive interfaces, arguing

that taking into account both physiological and cognitive human factors enables the system to

propose dynamically a set of pertinent data according to the operational context and to the

operator mental state. The goal is to facilitate and optimize his task especially in critical situations.

The main difference between self-adaptive interfaces and adaptable interfaces is that the

adaptable interfaces are defined during the design of the interface taking in consideration only

predefined levels of competence. On the other hand, a system with self-adaptive interfaces

adapts during run time the nature, the kind of communication devices and the logic of the

interactions to the characteristics of the task and to the physiological and cognitive state of the

2

human operator.

Zames (1998) proposed re-examination of the notions of adaptation and learning, on both

conceptual and design levels. The main ideas behind this approach are outlined as follows.

Adaptation and learning involve the acquisition of information about the plant (i.e., object to be

controlled). Better performance requires more information. The performance function determines

the nature of the information. For feedback control the appropriate notions of information are

metric, locating the plant in a metric space in one of a set of neighborhoods of possible plants.

Metric information can be quantified. The measures of metric complexity most frequently used for

this purpose are (1) metric dimension (inverse n-width), and (2) metric entropy. The object of

identification is to get this metric information, which takes time to acquire. The minimum time

needed to acquire it is related to the metric complexity of a priori data. There are two monotonicity

principles:

- Monotonicity Principle 1.

Information obtainable at any given time about behavior at some future

target date is a monotone increasing function of time.

- Monotonicity Principle 2.
Optimal performance is a monotone increasing function of relevant

information.

The non-adaptive (robust) control performance is designed or optimized on the basis of a

priori information. On the other hand, adaptive control is based on a posteriori information, and

uses the extra information to achieve improved performance. To flesh out these ideas, a number

of mathematical results will be outlined. Most of them have been obtained during the past ten

years or so, and many require further development.

Recent control literature indicates that with the increase in computational capability,

computational strategies of control are directed more toward intelligent behavior that is

increasingly being employed as a tool within an adaptive control technique. Major control

research focus is on fuzzy logic, neural networks, genetic algorithms, and rule-based learning.

Often, in the development of a particular system, more than one of these tools can be

employed in a hybrid fashion (Warwick, 1996). According to An et al. (1994), any intelligent

module must be able to modify its behavior in response to its interaction with the current

environment, and to be able to associate its current experiences with similar events that have

happened in the past. This means that an intelligent module must be able to adapt and in a

local manner. Within the context of intelligent control, and intelligent controller must be able to

modify its strategy according to its current performance and this modification will affect the

output of the controller for similar inputs (Tolle and Ersfi, 1992).

3

2. ADAPTIVE INTERFACES IN AVIATION
Early studies by Amalberti and his co-workers on the human-machine interfaces

(Amalberti and Menu, 1985; Menu, Amalberti and Santucci, 1986; Menu and Amalberti, 1988)

formed a basis for development of the adaptive interfaces in military aviation. Examples of such

studies include cognitive modeling of the fighter aircraft process control and development of an

intelligent on-board assistance systems (Amalberti and Deblon, 1992), decision-making under

time-pressure in air combat missions (Amalberti, 1991), reasoning model of the fighter pilots

(Amalberti, 1992), etc. Some of the more recent studies in this area are discussed below.

2.1 Dynamic adaptive interfaces in aircraft aviation
Bennett (2001) conducted a preliminary investigation of dynamic adaptive interfaces in

the domain of aviation. The primary aim of this study was the examination of the potential

performance decrements associated with an inconsistency and unpredictability of three adaptive

interfaces. The standard, candidate, and adaptive interfaces were evaluated in their effectiveness

in supporting Air Force pilots to complete a precision low-level navigation task. The standard

interface includes: 1) controls (throttle and joystick) displays (a horizontal situation display (HSD),

2) an attitude directional indicator (ADI), and a 3) head-up display (HUD) in de-clutter mode). .

The candidate interface contained an alternative control (a force-reflecting stick) and an

alternative display (configural flight director (CFD) - HUD). The force-reflecting stick controls the

pilot's input (i.e. amount of force required to implement the control input) as a function of the

plane's deviation from the optimal flight path. As opposed to the standard interface, which

presents current values for task-relevant variables, the computational aiding component of the

CFD-HUD calculates commanded control inputs (roll, pitch, and throttle) necessary to maintain

the aircraft's position on the optimal flight path. The representational aiding component of the

CFD-HUD combines this information in a centralized and easily interpretable display format.

For the adaptive interface, the standard HUD was used under conditions of the optimal

aircraft performance (deviations from the optimal flight path of less than 500-ft laterally or 50-ft

vertically; and deviations between the ETA and tuning goal of less than 10 sec). The candidate

HUD indicates that an aircraft is outside the above performance criteria. Two additional display

sets were included to the adaptive interface. An ADI presented a vertical velocity and angle of

attack indicators. Second one was an HSD similar to the HSD--moving map display in the F-

15E. This display presented an overhead perspective of the waypoints, course, and aircraft's

position relative to them.

The configural display (CFD) includes both a geometric format and a visual reference

point: a rectangular box and a watermark symbol. The component of the rectangle serves as a

reference to ground, whereas the dashed component serves as a reference to the sky. This

4

aspect of the display serves as a cue for the aircraft--ground relation. Deviations of the aircraft

from the optimal flight path result in movements of the rectangle relative to the fixed reference

point. A deviation in altitude is represented by a vertical displacement of the rectangle. A

deviation in heading is represented by rotation in the rectangle. The CFD HUD used the

airspeed calculations employed in the standard interface.

The candidate interface condition also contains a force-reflective haptic stick. The side-

stick controller was connected to a McFadden hydraulic control loader, which allowed numerous

aspects of stick feel to be modified in real time. The force-reflective stick was programmed to

provide a command input of sorts. A pilot who initiated inappropriate control inputs (those that

would move the aircraft away from the optimal flight path) would receive haptic feedback in the

form of increased resistance. The analysis of different interface impact on the navigation task

showed significant performance advantages in the quality of route navigation with the candidate

and adaptive interfaces relative to the standard interface. No significant differences between the

candidate and adaptive interfaces were found.

2.2 Adaptive multi-sensory displays in simulated flight
Tannen (2000) assessed the effectiveness of adaptive multi-sensory displays for aiding

target acquisition in an operationally relevant simulated flight task. HUDs and helmet-mounted

displays offer some advantages for target detection scenarios. However, their utility is often

constrained by characteristics unique to these technologies (e.g., narrow field of view, limited

resolution, additional helmet weight, etc.). Tannen et al. (2000) proposed to compensate these

limitations by the integration of spatial audio cues with standard HUD and head-coupled, helmet-

mounted display symbology. The seven interfaces that were tested comprised combinations of

adaptive and non-adaptive head-coupled visual and spatial audio displays designed to aid target

acquisition. The visual cuing display consisted of a look-to-line and range indicator that was head

coupled and projected onto the surface of the simulated flight environment.

The spatial audio display consisted of pulsed, broadband noise, displayed over a set of

headphones, which appeared to emanate from the direction of the target.

In the non-adaptive cuing conditions, the visual and spatial audio cues were present

throughout the entire flight trial whenever a target appeared in the field of regard. In contrast, in

the adaptive conditions, the modality of the cuing interfaces was determined by the pilot’s head

orientation. For example, the adaptive visual display was activated when targets were within

±15º of the center of the pilot’s head orientation. Conversely, the adaptive spatial audio cue was

initiated when targets were greater than ±15º from the pilot’s line of gaze. The pilots were

asked to acquire ground and air targets while they followed a prescribed flight path and

maintained a set airspeed and altitude.

5

An analysis of target acquisition performance indicated that all multi-sensory interface

configurations enhanced performance relative to the standard non-cued display and the non-

adaptive spatial auditory display. This effect was especially pronounced for ground targets.

Moreover, multi-sensory displays, on average, were found to provide an 825-msec advantage

over the non-adaptive visual cuing display for the designation of ground targets that were initially

outside of the pilot’s line of gaze. The advantages of multi-sensory displays were also reflected in

pilots’ overall ratings of perceived mental workload (National Aeronautics and Space

Administration Task Load Index), which were found to be approximately 30 points lower than the

standard non-cued and non-adaptive spatial audio displays.

2.3 Adaptive pilot-airplane interface
Mulgund and Zacharias (1996) presented an architecture of the adaptive pilot-airplane

interface (PVI). The adaptive interface uses computational situation assessment models (based

on Bayesian networks) and pilot workload metrics to drive the content, format, and modality of

cockpit displays. The main purpose of the PVI concept is to support a tactical pilot's situation

awareness and decision-making. The content, format, and modality of the adaptive pilot/vehicle

interface are controlled by PVI control module. The overall architecture of adaptive interface is

presented in Figure 1. PVI control module is driven by two key information streams: 1) the

content path, driven by a tactical situation assessment module that uses avionics system outputs

and the pilot's information needs; and 2) the format path, which uses an estimate of the pilot's

state (workload level, attentional focus, etc.) to determine the most appropriate content, modality

and format for conveying the required information to the pilot.

6

Figure 1 - Functional diagram of Situation-Driven Adaptive Interface (modified after Mulgund and
Zacharias,1996).

The content path is based on the Crew/System Integration Model – that is integrated model of the

air crew situation assessment and decision-making that has been using for the fighter attack

mission and air superiority modeling (Mulgund, 1996). The content path consists of following

stages:

1) Information processor module includes the following two elements: 1) the

 continuous state estimator that uses avionics system outputs to generate

 estimates of the aircraft's tactical situation (velocities, position, attitude,

 subsystems state, and states of the targets and threats); 2) discrete event

 detector that generates occurrence probabilities of mission relevant events

 (system failure, request for action, mission0related millstone)

2) Situation assessor block uses the estimated states and detected events to

 generates an assessed situation (S), which is a multidimensional vector defining

 the occurrence probabilities of the possible tactical situations that face the pilot.

7

 A fixed and predefined set of situations is assumed, determined only by the

 mission relevancy. The situation assessor relies on Bayesian networks

3) Information filtering module: uses the given situation (S) to filtering the

 information stream to determine what information must be presented to the pilot

 to support his/her situation awareness (SA) and procedure execution. Filtering

 strategy relies on the hierarchy of the events, goals, and situations and a

 prioritization of information in relation to these (Endsley, 1992). The output of the

 module is the specification of the information presented to the pilot.

The format path consisting of following two stages: 1) the workload estimator, 2) The

display configuration and adaptation strategy. The workload estimator includes:

a) Physiological processing system that uses such indices as: pilot pulse, respiration rate,

eye blink rate, eye line of sight (HMD- mounted eye tracker), and EEG to compute

physiological correlates of pilot workload.

b) Subjective and performance-based workload model, which provides the additional

workload measures form off-line subjective evaluations and performance based

assessment techniques. The individual on-line measures are fused together to aggregate

indicators of pilot states

The display configuration and adaptation strategy (DCAS) uses the pilot state indicators and the

pilot information requirements to determine how to configure the PVI displays. Implementation of

the DCAS in the form of an expert system will use two principal knowledge bases (KB):

a) Display configuration KB contains the specifications of all normal display modes, formats

and contents. The KB defines the baseline no-adaptive PVI, that may be manipulated by

pilot by switches.

b) Human performance model KB contains model based on the principles of the human

perceptual, cognitive, and response capabilities. This model provides a rule-based

guidance how to adapt the PVI to a given situation. The output will appear on the head-

down, head-up or helmet mounted displays. Auditory cueing could take form of

synthesized speech alerts, warning tones, or 3-D localized sounds.

8

2.4 Adaptive interface for terrain navigation
Baus et al. (2002) developed hybrid navigation system that adapts the presentation of

route directions to different output devices and modalities. The system takes into account the

varying accuracy of positional information according to the technical resources available in the

current situation. This system also adapts the information presentation to the limitation of user

cognitive resources. This resource-adaptive navigation system (project REAL) consists of three

major components. First, an information booth that consists of a 3Dgraphics workstation, where a

virtual walk-through through the environment is shown by a virtual presenter, uses

complementary spatial utterances and meta-graphics. Second, an indoor navigation system has

been build based on strong infrared transmitters mounted at the ceiling and small PDAs as

presentation devices. These are used to display simple sketches of the environment received via

infrared method. The third component is an outdoor navigation system that uses a small laptop in

combination with a head mounted display. A GPS system determines the user’s actual position

and an electronic compass tracks the user's orientation.

A single 3Dmodel of the environment is used to produce walkthroughs at the information

booth and sketches for the mobile use. Adaptation services include the choice of camera

perspective and path as well as the decision to include landmarks and interactive areas in the

graphics. The REAL system tailors the presentations to a variety of technical limitations. Besides

the size, resolution and color capability of the display, the system takes into account the

computational power of the used device (information booth, PDA, and wearable computer). A

specialty of REAL is the ability to integrate two different approaches to location sensitivity: active

and passive location sensitivity. The system considers a variety of parameters that affect the

cognitive resources, i.e. the walking speed, spatial familiarity and time pressure. For the

navigation in buildings the IRREAL subcomponent was developed. IRREAL transmits interactive

texts and graphics, very much like hypertext documents. This enables the user to interact with the

presentation, although there is no bi-directional connection. The generated presentations are

arranged in a presentation tree consisting of nodes, which may contain texts or graphics.

Through the use of transmission probabilities assigned to the different parts of a

presentation tree it is possible to adapt the presentation to the user’s walking speed. If the user

stays in a transmission area for a short time the device will receive only the information with

high priority, e.g., graphical walking directions. The more time the user spends in a transmitting

area more complex the information about the environment will become available. In the

ARREAL project a navigation system for pedestrians in an outdoor scenario was developed.

ARREAL consists of four components: A sub-notebook, used for the relevant computations. For

graphical or textual output a special clip-on for glasses is used. The users’ position and

orientation in the environment is determined through the use of a small GPS and a magnetic

tracker. The magnetic tracker was modified and equipped with two additional buttons, so that it

9

can be used to interact with the system analogously to a standard two-button computer mouse.

The modified tracker is used as a 3Dpointing device, e.g., the user can retrieve additional

information by pointing on a building. On the small clip-on display (640x320 Pixel) sketch-like

graphics are shown from birds-eye- or egocentric-perspective.

Overview maps are used to visualize the user's current position in the environment.

Graphics from the ego-perspective view are used to present more detailed information about the

environment, e.g., information about buildings in the current line of sight. In addition the system

supports different levels of detail in the visualization. The system is able to visualize different

portions of a map while changing from an overview to a detailed view of the environment. On the

other hand textual or graphical annotations can be inserted, such as the names of streets or

buildings. Navigational instructions are given by means of arrows that indicate turns to the user.

System chooses between two modes: a birds-eye and ego-perspective. The ego-perspective is

chosen when the system has adequate positional and orientational information. In cases were

positional and orientational information is of inferior quality, ARREAL prefers the birds-eye

perspective to the ego perspective. If bird’s eye-perspective is chosen, the precision of the

positional information is encoded by the gray dots, resulting in a close-up of that area of the

building. But in order to align the map to the walking direction, the system has to ensure the users

correct orientation. The system also takes into account the user's current walking speed. If user

moves fast, the system presents a greater portion of the map in order to help the user in

orientation and at the same time to reduce the amount of information about buildings at the edges

of the display. Since textual annotations at the edges of the display serve as menu items, the

system reduces also the possibility to interact with the system.

10

3. ADAPTIVE INTERFACE FOR SUBMARINE SYSTEMS
Soulard (1992) presented an adaptive interface for submarine warfare system SAITeR

(Séquencement d'Activités Intelligent en Temps Réel, i.e. Intelligent Process Scheduling). This

application was designed and developed at the Advanced Research Department of TS.ASM

Arcueil. SAITeR automatically performs a complete scheduling of the Target Motion Analysis

(TMA). Each task runs a specific data processing algorithm whose triggering depends on

operational and technical context evolution. SAITeR consists of two parts:

1) An automatic part (A) triggers algorithms depending on the operational context

 (township maneuvers, detected vessel maneuvers, the source of detection

 (mono- or multi-sensors detection, new contact or loss of detection), and results

 of the last algorithms.

2) A manual part (M) enables the human operator to trigger interactively particular

 algorithms on a small number of vessels in case of bad results from the

 automatic part (A).

The SAITeR controls the amount of information displayed. Analysis of the (A) part screen load

(number of vessels and delay of presence) can lead to reduction of information displayed (e.g.

the most threatened vessels or the vessels processed by the (M) part will be displayed).

Moreover, the system reinitializes and updates the operator model by continuous analysis of

human activities. The system takes into consideration some operator habits during performance

of particular tasks. These individual human characteristics can be stored by the system in an

operator model as yielding for simplification of the task.

Soulard (1992) suggested a diversification of interaction media to reduce visual

information overload and improve human operator performance. The multimodal interface

composed of following elements were proposed: 1) a touch entry screen (in place of some

buttons), 2) a voice input to keep eyes on the screen during some commands, and 3) the

speech synthesis under certain conditions, such as the use of headphone to reduce the

ambient noise or the use of short messages. The generic architecture of adaptive interface is

composed of three main modules:

11

1) Media Management Module that formats the events arriving from the different

 media or devices.

2) Multimodal Request Understanding Module that manages the multimodal request

 from the operator. Based on a linguistic and semantic analysis of the formatted

 events from the media manager, this module provides requests that are

 syntactically and semantically correct to the upper module.

3) Dialog Understanding Module that controls the dialog consistency i.e. when the

 operator makes a multimodal request of: 1) finding the current task of the

 operator, 2) dynamic updating of the task model, the operator model and the

 interactions history by analyzing the interactions, and 3) managing the strategy of

 the system and at anticipating the further task.

4. ACTIVE USER COLLABORATIVE INTERFACES

4.1 Adaptive interface for control of mental workload
Saiwaki (1996) described the adaptive interface that controls the level of the mental task

difficulty according to the user’s mental condition. The system measures and analyzes several

physiological indices of the user completing the audio-visual mental task presented on the

display. Than, it deduces the concentration and emotional tension level of the user, based on the

extracted specific features of the physiological indices. Finally, the system adjusts the control

parameters of the task to the user concentration and tension level. The system is composed of 3

stages:

1) EEG, ECG, and changing rate of SPR, are measured as original biological signals and

physiological indices are extracted by biological signal processing. The following indices

are used: heart rate (HR), and respiratory sinus arrhythmia (RSA); changing rate of SPR;

distribution of EEG’s peak frequency. 2) The level of emotional tension and concentration

of the user are estimated from indices. The system learns the relations between user’s

mental conditions and the indices by pre-experiments in advance. The neural network is

utilized for learning of these relations. 3) Mental task is controlled on the basis of the

concentration and tension level assessed in the previous stage. The level of task is

changed by adaptation of control parameters of the task, the picture size, color, moving

speed, and sound tone.

12

4.2 Active user-interface paradigm
Brown and Santos (1999) developed an active user interface for PESKI system. The

PESKI system (Probabilities, Expert Systems, Knowledge, and Inference) is an integrated

probabilistic knowledge-based expert system development environment utilizing Bayesian

Knowledge-Bases as its knowledge representation. PESKI provides users with engineering

agents for knowledge acquisition, verification and validation, data mining, and inference, each

capable of operating in various communication modes to the user. Authors claimed that active

user interfaces serve as actuators in the human-machine interface, and allow the user to interact

with the computer in a naturalistic/symbiotic manner. The active interfaces are capable of multi-

levels of collaboration and autonomy. The user of an active user interface is fully aware of any

actions, whether explicit (authorized consent) or implicit (implied consent), taken by the interface

and has a complete, intuitive understanding of such actions. Brown and Santos (1999) developed

for PESKI system intelligent knowledge engineering tools (agents) and integrated them using the

active user interfaces paradigm.

PESKI consists of four major components (see Figure 2 or PESKI

architecture):

. • Intelligent Interface Agent: translates English questions into inference queries

and translates the analyses/inference results back into English, ; allowing intelligent

communication exchange between the user and the system; Inference Engine ; includes

intelligent strategies for controlling the selection and application of various inference engine

algorithms (e.g. A*, 0), integer linear programming (ILP), genetic algorithms (GAs) to obtain

conclusions to user queries,

• Explanation & Interpretation module; keeps track of the reasoning paths the

inference engine; allows the user to query the system about how and why

an answer was derived.

• Knowledge Acquisition & Maintenance; automatically incorporates new or

updated expert knowledge into the knowledge base.

The active user interfaces paradigm was used to organize the PESKI into three

subsystems. The four above components serve multiple functions and each PESKI

subsystem combines different components together for that subsystem. The User Interface

is composed of the Intelligent Interface and the Explanation & Interpretation components,

as well as the interface components for the various engineering agents. The Knowledge

Organization & Validation consists of the Explanation and Interpretation component along

with the human expert and knowledge engineering tools.

13

Figure 2 – PESKI Architecture (after Santos, 1999)

Organization is accomplished by communicating with the Knowledge Acquisition & Maintenance

component, ensuring compliance with the BKB consistency constraints. The Reasoning

Mechanism consists of the Inference Engine and the Knowledge Acquisition & Maintenance

components. Assistance was provided by developing and maintaining cognitive model of the

user. The user model captures the goals and needs of the user within the PESKI environment, as

well as possible system events that occur, within a probabilistic representation/model of the

PESKI environment. The interface agent determines the how, when, what, and why to offer

assistance to the user. The agent is capable of offering assistance for such goals as which agent

to use to correct a BKB consistency constraint violation as well as suggesting the user preferred

communication mode for a given agent.

The Knowledge Acquisition & Verification is achieved through the MACK agent, who

automatically and incrementally confirm consistency of the knowledge elicited from the expert and

provides assistance by identifying the source of any inconsistency and proactively suggesting

corrections. Regular incremental checks preserve both probabilistic validity and logical

consistency as knowledge is acquired presumably under the expert’s current consideration.

PESKI’s validation is performed using two agents - BVAL and GIT. BVAL validates a knowledge

base against its requirements using a test case-based approach. Under certain conditions, the

14

knowledge base is corrected automatically via reinforcement learning of the probabilities. The

graphical incompleteness tool (GIT) is used to visualize the knowledge base incompleteness for

the user and actively provides solutions to correct it. The agent uses data visualization of the

BKB and guides the user via color-coded shadings on how to repair the problem. The Inference

Engine uses a performance metric-based approach to intelligently control a number of possible

anytime and anywhere inferencing algorithms (e.g., A*, genetic algorithms). The control is specific

to the given knowledge base and test case provided by the expert. Results are returned to the

user via the Explanation & Interpretation subsystem of PESKI as they become available.

5. BRAIN-BASED ADAPTIVE COMPUTER INTERFACES

5.1 Asynchronous Adaptive Brain Interface
Millán and Mouri no (2003) developed an asynchronous Adaptive Brain Interface in which

the subject makes self-paced decisions concerning switching from one mental task to another.

This portable Adaptive Brain Interface (ABI) is based on the on-line analysis of spontaneous

electroencephalogram (EEG) signals measured with eight scalp electrodes and able to recognize

three mental tasks. This approach relies on an asynchronous protocol where the subject decides

voluntarily when to switch between mental tasks. The simple local neural classifier is used to

recognize (every 0.5 s) the mental task on which the subject is concentrating. ABI was used to

operate two brain-actuated devices: a virtual keyboard and a mobile robot (emulating a motorized

wheelchair).

The brain computer interface (BCI) is based on the analysis of EEG signals associated

with spontaneous mental activity. The analysis is concerned with local variations of EEG over

several cortical areas that are related to different cognitive mental tasks such as imagination of

movements, arithmetic operations, or language. The EEG patterns embedded in the continuous

EEG signal and associated with different mental states was determined. The machine-learning

techniques were used to train the classifier and follow a mutual learning process where the user

and the brain interface are coupled and adapt to each other. This accelerates the training

process. In the presence of feedback, subjects achieved good performance in just a few hours of

training. ABI has a simple local neural classifier where every unit represents a prototype of one of

the mental tasks to be recognized.

It was found that this local network performs better than more sophisticated approaches

such as support vector machines and temporal-processing neural networks (TDNN and Elman-

like). This performance was achieved by averaging the outputs of the network for eight

consecutive EEG samples (and still yielding a global response every

0.5 s). Once trained, the response of the network for the arriving EEG sample is the task with the

highest posterior probability, provided that it is above a given probability confidence threshold

15

(otherwise the response is classified as “unknown”). The posterior probability distribution is based

on the Mahalanobis distance from the EEG sample to the different prototypes.

Several demonstrations were developed to illustrate the wide range of systems that can

be linked to ABI. The brain interface can be used to select letters from a virtual keyboard on a

computer screen and to write a message. Initially, the whole keyboard (26 English letters plus the

space to separate words, for a total of 27 symbols organized in a matrix of three rows by nine

columns) is divided in three blocks, each associated to one of the mental tasks. The association

between blocks and mental tasks is indicated by the same colors as during the training phase.

Each block contains an equal number of symbols, namely nine at this first level (three rows by

three columns). Then, once the neural classifier recognizes the block on which the subject is

concentrating, this block is split in three smaller blocks, each having three symbols this time (one

row). As one of these second-level blocks is selected (the neural classifier recognizes the

corresponding mental task), it is again split in three parts. At this third and final level, each block

contains one single symbol. Finally, to select the desired symbol, the user concentrates in its

associated mental task as indicated by the color of the symbol. This symbol goes to the message

and the whole process starts over again. Thus, the process of writing a single letter requires three

decision steps.

The EEG potentials were recorded at the eight standard fronto-centro-parietal locations:

F3, F4, C3, Cz, C4, P3, Pz, and P4. The sampling rate is 128 Hz. The raw EEG potentials are

first transformed by means of a surface Laplacian (SL) computed globally by means of a

spherical spline of order. Then the Welch periodogram algorithms were used to estimate the

power spectrum of each SL-transformed channel over the last second. EEG sample had 96

features (8 channels x 12 components each).

5.2 EEG-based interfaces
Pope, Bogart, and Bartolome (1995) examined the utility of EEG for adaptive automation

technology. These researchers developed an adaptive system that uses a closed-loop procedure

to adjust the mode of automation based on changes in the operator's EEG patterns. The closed-

loop method was developed to determine optimal task allocation using an EEG-based index of

engagement or arousal. The system uses a bio-cybernetic loop that is formed by changing levels

of automation in response to changes in mental workload demands. Thus, an inverse relation

exists between the level of automation in the tasks and the level of operator workload. The level

of automation in the task set could be such that all, none, or a subset of the tasks could be

automated. The task mix is modified in real time according to the operator's level of engagement.

The system assigns additional tasks to the operator when the EEG reflects a reduction in task

engagement. On the other hand, when the EEG indicates an increase in mental workload, a task

16

or set of tasks may be automated, reducing the demands on the operator. Thus, the feedback

system should not reach a steady-state condition in which neither sustained rises nor sustained

declines in the EEG are observed.

In this study participants performed the compensatory tracking task of the Multiple-

Attribute Task (MAT) Battery. The MAT Battery primary display is composed of four separate task

areas or windows, comprising the monitoring, tracking, communication and resource-

management tasks. Each of these tasks in the MAT set is designed to be analogous to a task that

crewmembers perform in flight management and each can be made either manual (subject must

manage task) or automated (computer manages task). In the version of the MAT developed for

these studies, the monitoring, communication and resource-management tasks remained in

automatic mode, and the compensatory tracking task was performed by the subject when in

manual mode and only monitored by the subject when in automatic mode. Pope et al. (1995)

reported that three indexes--beta/alpha, beta/(alpha plus them), and alpha/alpha--were able to

distinguish between the feedback conditions, but the best discriminator was the index,

beta/(alpha plus theta).

Prinzel et al.. (2000) developed a closed-loop, biocybernetic system to test various

psychophysiological measures for their use in adaptive automation. Specifically, were assessed

the use of the EEG band ratio, beta/(alpha plus them) on the basis of behavioral, system, and

physiological data gathered under negative and positive feedback controls. Furthermore, the

study was designed to determine how different task loads impact adaptive task allocation and

system regulation of task engagement and workload. Participants operated a modified version of

the MAT Battery. The MAT Battery is composed of four separate task areas, or windows,

constituting the monitoring, compensatory tracking, communication, and resource management

tasks. These different tasks were designed to simulate activities that airplane crewmembers often

perform during flight. Only the monitoring, compensatory tracking, and resource management

tasks were used for this study. The functioning of the monitoring and resource management tasks

was controlled by a script file that controlled the sequence and timing of the events in the tasks.

The compensatory tracking task was cycled between manual and automatic modes

Tracking performance was found to be significantly better under the negative

feedback condition than under the positive feedback condition. These results suggest that the

closed-loop system can facilitate performance and complements the task allocation and

psychophysiological data supporting the use of the system for adaptive task allocation. The

results showed that more task allocations were made under the multiple task condition.

Therefore, the system appears to be sensitive to increases in task load. Participants also

rated workload higher and performed the tracking task more poorly under the high workload

condition. The EEG engagement index, however, was not found to discriminate between

these two task conditions, although the value of the index was higher under the multiple task

17

condition than under the single task condition. Nevertheless, these results support that the

single and multiple task conditions provided different levels of task load.

5.3 Interfaces with on-line self adaptivity
Vico et al. (2001) proposed to achieve the on-line self-adaptivity of the human-computer

interfaces by implementation of the basic principles of classical behavior conditioning to the

neural networks. This type of interface adapts without any a priori information of their interaction

with the user. The prototype adaptive interface was developed to demonstrate the applicability of

this learning technique to the adaptation of user interfaces. Classical conditioning deals with

unconditioned stimulus (UCS) that automatically elicits an unconditioned response (UCR). If

some given conditioned stimuli (CS) precede another UCS that elicits a concrete response, this

CS will be associated with the UCR. This CS–UCS relation transforms in a conditioned responses

(CR) that involves the specific generation of the UCR by the CS. The Sutton and Barto (SB

model) model of the classical conditioning (that considers the temporal appearance of the UCS

and CS) were implemented to the neural networks.

Figure 3 - Basic neural network architecture for the SB model (after Vico et al. 2001).

Adjustment of the synaptic weights between neurons was made in an incremental learning

fashion. This adjustment is done according to the following rule:

iij xyyW)(−=∆ α

With

=ijW synaptic weight(or association level between stimuli and response)

=ix temporal trace of the CS
=y response level(UCR or CR)
=y trace of the response

18

Both traces implement a short-term memory of recent activation levels, and are

computed according to the following equations:

)()1()()1(
)()()1(

tytyty
txtxtx jii

λλ

β

−+=+

+=+

Where represents the over time CS, is the response level at time t, and)(tx)(ty β
and λ are constants related to the size of the temporal integration window.

The model works by increasing a weight when a CS comes before the arrival of the UCS

and decreasing it if the predicted UCS does not arrive. In order to avoid recurrent self-

connections and overall inhibitions, the CS is `artificially' maintained up to the arrival of the UCS

to get the memory traces necessary for associating both stimuli. The neural circuit shown in Fig. 4

constitutes the building block of a network that learns temporal relations between stimuli and

responses. The particular architecture of the network must account for all the input–output

relations that might be present in the interface behavior.

The implemented prototype is windows-based application that allows the user to build

sentences from limited sets of words. These words are grouped in three different classes:

pronouns, verbs, and objects, and can be extracted from menus that can be opened up by

clicking on the button labeled with the corresponding class identifier. Finally, the `OK' button

restarts the system, allowing a new sentence to be typed. The structure of the neural system

used in the adaptive interface is presented in Fig. 4. The basic circuit of Fig.3 is expanded to

implement all possible combinations of events and actions. This two-layer network has an input

layer that stores the user-generated events and an output layer that produces actions. After the

group of user feed the system a set of events can be grouped, according to their nature. Two

classes of events sets were obtained: user's commands (environmental stimuli perceived by the

interface) and internal actions (interface's responses) that have precise consequences on the

computer system.

19

Figure 4 – Overall network architecture (Vico, 2001). User’s commands and internal actions

The command–action relations are represented by UCS–UCR excitatory connections

(positive weights). Stimuli arrive to the network from the left, generating responses through the

excitatory rigid connections represented by small solid circles. The model neuron is defined as a

summation of incoming activity. A neuron remains in a resting state (output to 0) if there is not

enough activity to activate it, and outputs a maximum value (1) when overall activity exceeds the

threshold. Rigid excitatory connections are adjusted in such a way that the activation of the pre-

synaptic neuron is able to elicit a post-synaptic response. As the user enters sentences, the

interface trains itself, and some connections start changing their initial values. At some point, the

interface starts eliciting CRs (anticipating user's commands). This unexpected behavior might or

might not fit with the user's interests. The sequence of actions that follows a CR tells the system

whether this command was or not appropriate: if the user feeds an event that keeps the expected

sequence on the track then the acquisition is effective, and in the future this event will be

automatically generated by the interface while the sequence remains valid. If, instead, the user is

forced to go back, giving actions that break the expected sequence of commands, then the

interface has to reconsider its CR, extinguishing this behavior in the future.

This interaction between the user and the interface takes, as a consequence, the initial

random configuration of the network to a stable state where the interface performs the predictions

and elicits adequate actions to facilitate the task. This behavior will be stable as long as the user's

commands always follow the same series. If the user changes the sequence, then the interface is

20

taken to a different state where some previous actions are extinguished and some new skills are

learnt. This interface can be upgraded to a sort of adaptive system that predicts the arrival of a

user's commands and, furthermore, performs appropriate actions that speed up the interaction

between the user and the interface.

The main difference between the proposed approach and traditional methods is that

the neural network by itself rules the way the interface operates. While most intelligent skills

are pre-included in the user interface, the network introduces non-modifiable connections to

implement the pre-wired reactions (the interface itself) and modifiable connections that account

for all possible associations among user actions and interface behavior. Initially, this method

applies to non-modal interfaces, in which system response to one event depends only upon

the event. However, the learning mechanism underlying this technique converts the original

non-modal interface in a modal interface where the system response to one event is related to

previous event by means of the memory traces stored in synaptic weights of the neural

network.

6. INTERFACES FOR ADAPTIVE CONTROL SYSTEMS
Adaptive control is an active and diverse research area with many different applications.

An adaptive control system can be defined as a feedback control system intelligent enough to

adjust its characteristics in a changing environment so as to operate in an optimal manner

according to some specified criteria (Wahi et al., 2001). Review of literature shows that adaptive

control systems have achieved great success in aircraft, missile, and spacecraft, and process

control applications. Applications of adaptive control can be broadly divided into application of

classical and intelligent control techniques. This literature review focuses on the intelligent control

techniques that combine and extend theories and methods mainly from artificial intelligent area

such as, neural networks, fuzzy logic, and evolutionary programming. These computing

techniques are used individually or in combinations.

6.1 Fuzzy Logic Applications
This section discusses recent application of fuzzy logic in adaptive control

systems in aircraft, and system and process related control applications.

Fuzzy logic based fight control system

21

Zhou et al. (1997) proposed for a fuzzy logic based fight control system for a hypersonic

transporter in order to provide the longitudinal stability in the hypersonic region and to improve

the response of the vehicle as well as to make the response exactly follow the commands.

Fourteen fuzzy inference rules were used to model human operator behavior and max-min

composition algorithm was used in the inference model. The model was used at four flight points

of the flight envelope. The evaluation included of the following: 1) response to the hypersonic

transporter with the fuzzy logic controller to an initial disturbance of the angle of attack in the

hypersonic region, in which the vehicle without the fuzzy logic controller was dynamically

unstable, 2) comparison of the fuzzy logic controller with a conventional stability augmentation

system, and 3) robustness of the fuzzy logic controller to flight condition variation. Figures 5.1.1.1

and 2 shows general construction of a fuzzy logic controller and functional block diagram of FLC

of the hypersonic aircraft

Figure 5 - General construction of a fuzzy logic controller (after Zhou et al. 1997)

The results showed that the fuzzy logic controller had the ability to stabilize the vehicle in the

hypersonic region, and was fairly robust across the flight envelope. The authors also found that

the fuzzy logic controller may be more capable than the conventional stability augmentation

system.

Figure 6 - Functional block diagram of fuzzy logic controller for hypersonic aircraft (after Zhou et

al. 1997).

22

Multiple fuzzy controllers for flight control systems

Schram et al. (1997), in their study, implemented multiple fuzzy controllers for anticipating

failure of flight control systems using a fuzzy logic expert system. In this study, the rule-based

system was used as outer loop controller and additional supervisory rules were defined in case of

failures. These ascertained the achievement of smooth and fast switching between different

control modes in the same framework. Using fuzzy sets and fuzzy logic operations, the study

designed a fuzzy reasoning system that acted as a controller. Figure 7 shows the structure of a

typical fuzzy logic controller.

The control strategy was stored in the form of IF-THEN rules in the rule base. These

rules represented a static mapping from inputs (measurements) to outputs (control actions).

Dynamic filters were used to introduce dynamics (error and derivative of error) and integration

of the output. The membership functions provided a smooth interface to the numerical process

variables. The fuzzification module determined the membership degree of the antecedent fuzzy

sets. The inference mechanism combined this information with the rule base and determined

the output of the rule-based system. In order to obtain a non-fuzzy signal, the output in the form

of a fuzzy set was defuzzified. The aggregation and defuzzification phase were then combined

in one step by the weighted fuzzy-mean method.

Figure 7 - Block diagram of the fuzzy logic controller (after Schram et al. 1997)

Flight control and mission planning for unmanned aerial vehicles

Vachtsevanos et al. (1997) proposed a hybrid hardware-software platform to support

flight control and mission planning algorithms for an autonomous unmanned aerial vehicle. The

objectives of the project were to demonstrate automation technologies for vertical takeoff and

23

landing and to develop an integrated product and process development. The autonomous

unmanned vehicle configuration consisted of a mission planner that included a supervisory

controller and fuzzy route planner, fault tolerance, and navigator. The configuration also used a

fuzzy flight controller that used phase portrait assignment algorithm. This algorithm is capable

to utilize experimental data or simple nonlinear system models and heuristic evidence to arrive

at the phase plane or phase space representation. Figure 8 shows the ASRT configuration

Figure 8 - The ASRT configuration (after Vachtsevanos et al. 1997).

In this ASRT model, the high-level supervisory controller provided the start and destination points

to the route planner. The route planner’s task was to generate the ‘best’ route in the form of

waypoints for the helicopter to follow. It used a modified A* search algorithm that minimized a

suitable cost function consisting of the weighted sum of distance, hazard, and maneuverability

measures. The cost elements were expressed as fuzzy membership functions. Figure 9 shows

the flowchart of the route planner. A fuzzy navigator was designed to command the helicopter in

the navigation mode. The

Adaptive human-computer interfaces vehicle followed a series of waypoints in a intelligent

manner in order to achieve the best compromise between waypoint spatial compliance and

energy management.

24

Figure 9 - Flow chart of the route planner (after Vachtsevanos et al. 1997).

The model also consisted of a fuzzy fault tolerance module where critical sensor or component

failure modes were stored in a fuzzy rule base as templates. Real time sensor data were then

fuzzified and an inference engine was employed to compare the incoming signals with the stored

information. In the model, the failure detection and identification architecture entailed both online

and offline learning algorithms and also means to associate a degree of certainty to the decision

making process. The ASTR model consisted of a fuzzy flight controller that utilized phase portrait

assignment algorithm (PPAA). Preliminary results showed that introduction of fuzzy logic based

algorithms for the flight control and mission planning, in conjunction with other decision support

tools, offers promise that such autonomous vehicles can accomplish a true mission. The authors,

however, emphasized for further studies in order to achieve real autonomy in terms of intelligent

attributes-adaptation, learning and fault-tolerance.

Virtual sensors in flight control systems

Oosterom and Babuska (2000) developed and implemented a virtual sensor for normal

25

acceleration in flight control system that was used in a small commercial aircraft. The

consolidated outputs of dissimilar sensor signals were used as the inputs of the virtual sensors.

The application of virtual sensors in flight control systems makes it possible to distinguish

between two real sensors in the case of a failure and therefore either increase the safety of the

system or reduce the cost of the system. A Takagi-Sugeno (TS) type fuzzy model was utilized for

this purpose. The results showed that variance accounted for (VAF) index was higher in TS

model compared to the linear model and that root mean squared error was less in TS model

compared to the linear model. The authors proposed for future studies to investigate the

robustness of the virtual sensors with respect to variations in the aircraft weight and the center of

gravity and also in ‘pilot in the loop’ simulations.

Virtual flight data recorder

Napolitano et al. (1999) utilized neural network and fuzzy logic for the development of a virtual

flight data recorder on commercial airliners. In their study, a neural network simulator (NNS) was

used to predict the aircraft control surface deflections by using neural network or fuzzy logic

reconstructor (NNR or FLR). Figure 10 shows the block diagram of the model.

NNR = Neural Network Reconstructor

NNS = Neural Network simulator

FDR = Flight Data Recorder

Figure 10 - Block diagram of the virtual flight data recorder (after Napolitano et al. 1999).

26

The NNS was trained off-line, using available flight data for the particular aircraft. Then

the NNS was interface with the NNR or FLR. The outputs of the two reconstructors are the control

surface deflections that minimize a performance index based on the differences between the

available data from the flight data recorder and the output from the NNS. The results for the study

showed that both schemes provide accurate reconstructions of the control surface deflections

time histories.

Intelligent flight support system

Burdun and Parfentyev (1999) investigated the problem of intelligent flight support under

complex operational conditions. In this study, a ‘chain reaction' mechanism of a flight accident

was described. An affordable method of flight safety enhancement in advanced aircraft was

suggested. The method employed the concept of a hybrid intelligent pilot model, which

combined positive anthropomorphic and mathematical properties. A central component of this

artificial intelligence model was a comprehensive knowledge base in the form of fuzzy situational

tree-network (FSTN) of flight.

A conceptual framework and some algorithmic issues of the method were discussed.

Examples of FSTN prototyping were described in the article. Potential applications included

an intelligent pilot-vehicle interface, automatic flight-envelope protection, autonomous

(robotic) flight including multiple vehicle systems, resolution of conflicts in close free-flight air

space, and others.

Active control of aircraft dynamics

Jeram and Prasad (2003) designed an active control system that alters the force-feel

characteristics of a two active-axis-sidestick during adverse aircraft-pilot coupling (APC) events to

provide a tactile avoidance cue. These events, also called Pilot Induced Oscillations (PIO),

typically occur when the total aircraft dynamics unexpectedly deviate from the pilot’s expectations

of control and response. This is often due to nonlinear effects such as rate limiting elements that

make the aircraft dynamical response sluggish. In this study, a fuzzy logic based PIO detector

was used to estimate the dominant frequency, phase lag, and actuator rate limit, and triggers a

tactile avoidance cue that uses friction, radius of motion, and bobweight dynamics to

communicate the dynamical nature of the aircraft that precipitates a PIO event. Preprocessing of

PIO detection is shown in Figure 11.

The PIO tactile avoidance cues presented in this study explored three new elements

for carefree maneuver systems: 1) They apply to a controllability limit rather than a structural

limit, 2) They use a logic based detector rather than an arithmetic cue detector, and 3) The

27

tactile interface uses radius of motion, friction, and force-feel dynamics rather than

displacement based force cues.

Figure 11 - Preprocessing of pilot induced oscillation (PIO) (after Jeram and Prasad, 2003).

The study found that a unidirectional friction force up to 40% of the maximum static deflection

force could provide an effective, intuitive tactile cue that the pilot’s stick movement exceeded

some rate limitation within the total aircraft. This saturation cue was effective when there was a

fundamental directional relationship between the rate limited element and the inceptor movement.

However, the authors concluded that, It may not be appropriate for aircraft with unstable

aerodynamics requiring multiple control surface actuator reversals during a maneuver. It was also

found that the range of motion (RoM) cue was marginally useful. It can help control PIO events,

but it does so at the cost of reduced pilot control authority. Also, some variations of this cue,

where force gradient is altered, can produce objectionable interference with pilot commands. The

authors suggested that similar PIO countermeasures may be implemented by the flight control

28

system without the use of active cues.

On-Line Intelligent Processor for Situation Assessment

Mulgund et al. (1997) assessed the feasibility of developing an concept prototype for an

On-Line Intelligent Processor for Situation Assessment (OLIPSA), to serve as a central processor

to manage sensors, drive decision-aids, and adapt pilot/vehicle interfaces in the next-generation

military cockpit. The approach integrates several enabling technologies to perform the three

essential functions of real-time situation assessment: 1) Event detection uses a fuzzy logic

processor and an event rule base to transform fused sensor data into situational-relevance

semantic variables, 2) Current situation assessment is performed using a belief network (BN)

model to combine detected events into a holistic “picture” of the current situation, for probabilistic

reasoning in the presence of uncertainty, and 3) Future situation prediction is carried out via

case-based reasoning, to project the current situation into the future via experience-based

outcome prediction. OLIPSA’s performance was demonstrated initially in the defensive reaction

portion of an air-to-ground attack mission, in which a pilot must deal with an attack from threat

aircraft. Situation awareness models were developed to support the pilot’s assessment of the

threat posed by detected aircraft.

Conflict free flight path guidance system

Rong (2002) developed an agent-based hierarchical system that attempts to provide

optimal and conflict free flight path guidance in situations where more than one type of conflict

existed. An intelligent executive guidance agent, acting as a high-level arbitrator, received

guidance information from lower-level weather agent and traffic agents. Figure 12 shows the

overall architecture for agent based hierarchical system.

29

Figure 12 - Overall architecture of the agent based hierarchical system (after Rong (2002).

When the flight path guidance from the two agents conflicted, the executive agent

arbitrated by considering the spatial and temporal characteristics of the conflicting guidance. It

classified them as either tactical or strategic in nature, and then prioritized them according to a

pre-defined rule base of conflict priorities. The arbitration function thus acted as a fuzzy

controller, and gradually switched the guidance between the weather agent and traffic agent,

providing conflict free flight path guidance, as the aircraft flied in and out of dangerous regions.

Results of test cases presented in the paper demonstrated that the approach and algorithm could

successfully resolve combined weather and traffic conflicts.

Intelligent and autonomous flight control system

Wu et al. (2003) investigated on an intelligent and autonomous flight control system for

an atmospheric re-entry vehicle based on fuzzy logic control and aerodynamic inversion

computation. A common PD-Mamdani fuzzy logic controller was designed for all the five re-entry

flight regions characterized by different actuator configurations. A linear transformation to the

controller inputs was applied to tune the controller performance for different flight regions while

using the same fuzzy rule base and inference engine. An autonomous actuator allocation

algorithm was developed, based on the aerodynamic inversion computation, to cover all the five

actuator configurations with the same fuzzy logic controller.

Simulation tests were conducted to track both a benchmark trajectory and the nominal re-

30

entry trajectory. Test results showed that both the thrusters and body surfaces were able to

conduct their roles in appropriate flight regions along the nominal trajectory. Tracking errors and

the actuator usage were both well within their appropriate acceptable ranges. However, the bank

reversals in the early part of nominal trajectory were too demanding for the thrusters, which

revealed that there was a mismatch between the trajectory computation and the vehicle control

regarding the thruster settings. Compared to the NLDI control approach, the proposed approach

provided a better tracking performance, while having advantages in autonomous actuator

allocation to guarantee the availability of the commanded control moments, and in handling non-

linear actuator saturations (in both thrust and control flaps). Appendix A summarizes the

reviewed studies on utilization of fuzzy logic controllers.

6.2 Neural network applications
Neural networks are known for their capabilities to approximate nonlinear mappings to a

high degree of accuracy. Recently, neural networks have been widely used in the control of

systems of transportation and wide variety of technological systems. Appendix B summarizes the

reviewed studies on neural network based controllers.

Intelligent navigational aids

Caldwell et al. (1998) developed a neural network based landing approach navigation

aid. The navigation aid provides the pilot with turning rate information that is based only on a

non-directional beacon ground radio station and an automatic direction

Adaptive human-computer interfaces finder. Figure 13 shows the incorporation of phase

identification algorithm into neural networks.

Figure 13 - Neural network and phase identification (after Caldwell et al. 1998).

31

The neural network controller determines a landing approach based on a seven-phase typical

non-directional beacon system. In each phase, a feed forward neural network with one hidden

layer with three nodes for non-directional beacon landing was used. A back-propagation learning

strategy was used to determine the weights of the network. Simulation of eight cases showed that

neural networks trained on human control patterns can be used as landing approach navigation

aid.

Adaptive flight control system

Napolitano et al. (1999), in their study, demonstrated the capabilities of hardware based

online learning parallel neural networks featuring neural schemes for fault-tolerant capabilities in

a flight control system. Two different fault-tolerant schemes were introduced. The first scheme

provided sensor failure detection, identification, and accommodation (SFDIA) for different kinds of

sensor failures within a flight control system while the second provided actuator failure detection,

identification, and accommodation (AFDIA) for different actuator failures. Simulation showed that

by means of lower and upper bounds of auto and cross correlation functions, the controller was

able to integrate AFDIA and SFDIA schemes without degrading performance in terms of false

alarm and incorrect failure identification.

Near-optimal helicopter flight load synthesis

In their study, Manry et al. (1999) used neural networks for near optimal helicopter flight

load synthesis (FLS) that is the process of estimating mechanical loads during helicopter flight,

using cockpit measurements. First, modular neural networks were used to develop statistical

signal models of the cockpit measurements as a function of the loads. Then Cramer-Rao

maximum a-posteriori bounds on the mean squared error were calculated. Finally, multilayer

perceptrons (MLP) for FLS were designed and trained that approximately attained the bounds

or optimal performance. The authors, following the simulation, concluded that further studies

need to be done to size the inverse networks in order to produce better bounds and to

determine the objectivity of mappings directly from the training data.

A fault-tolerant flight controller design

 Yan et al. (1999) applied minimal radial basis function neural networks called the

Minimal Resource Allocation Neural Networks (MRAN) for fault-tolerant flight controller design.

In their architecture, the MRANN controller aided the conventional controller.

 The neural nets did not require off-line training and the scheme had good fault-tolerant

32

capabilities. The MRAN controller was illustrated for a fighter aircraft (F-8) longitudinal control

in an autopilot mode for following velocity and pitch rate pilot commands under large parameter

variations and sudden variations in actuator time constants. Results indicated that MRAN

controller exhibited better performance than another feed forward inverse neural controller that

used a gradient learning scheme.

Adaptive flight control system

Urnes et al. (2001), in their study, developed a damage adaptive flight control system that

utilizes neural network technology to predict the stability and control parameters of the aircraft,

and uses this data to continuously optimize the control system response. Figure 14 shows the

block diagram of application of neural network by the IFCS design and the advanced flight

controller to continuously optimize flight path response.

Figure 14 - Application of neural network in IFCS design (after Urnes et al. 2001).

The network design used a pre-trained neural network that may be combined with an

additional self-learning neural network. This self-learning network would learn and process the

incremental changes to the aircraft plant that may occur under failure or battle damage

conditions. The neural network data was provided to an adaptive flight controller that continuously

optimizes the control to compensate for damage or failure conditions of the aircraft. The system

was implemented on fifteen flights of an F-15 with a test flight envelop with supersonic flight

conditions. The system successfully provided continuous monitoring of off-nominal failure or

33

environment conditions, and immediate assistance to the flight crew and the vehicle control

system to regain stable control of the vehicle.

Flight sensor control system

Campa et al. (2002) showed the results of the analysis of a scheme for sensor failure,

detection, identification, and accommodation (SFDIA) using experimental flight data of a research

aircraft model. The study was based on the use of neural networks (NNs) as online learning

nonlinear approximators. The study compared the performances of two different neural

architectures. The first one was based on a multi layer perceptrons (MLP) trained with the

extended back propagation algorithm (EBPA). The second architecture was based on a radial

basis function (RBF) trained with extended-MRAN (EMRAN) algorithms. The scheme had shown

to be successful in the detection, isolation, and accommodation of failures ‘injected’ on a 1/24

scale WVU B777 flight data. The mapping accuracy and the generalization capabilities of both

classes of NNs had shown to be critical for the performance of the scheme. The comparison of

the two architectures showed that RBF-EMRAN based scheme was slightly better than MLP-

EBPA based scheme.

6.3 Application of genetic algorithms
Air traffic planning

Oussedik et al. (2000) presented a new air traffic routes generator based on genetic

algorithms. Their objective of developing such route generator was to spread the traffic on new

alternative routes due to the traffic growth and congestions in direct and near direct routes. This

generator used the information of airspace beacons and sectors. The software generator

resulting from the use of the genetic algorithms generated a set of alternative routes that differed

from each other in several characteristics, such as geometrical matrices and crossed sectors,

with reasonable extra distance compared with the direct route (with the minimum distance). The

software generator also produced routes that avoid some congested sectors or restricted areas.

A longitudinal flight controller

Austin and Jacobs (2001) applied genetic algorithms to the design of a longitudinal

flight controller for a hypersonic accelerator vehicle that is to be used to launch small satellites.

The study examined the capacity of a genetic algorithm in designing a fuzzy logic controller for

the task of closed loop flight control. The objective of the design task was to configure the

control surface, along with a fixed and preset control structure, through selection of the rule

consequents and input scaling. Figure 15 shows the closed loop attitude and trajectory control

model for longitudinal flight. The angle-of-attack rule base contained 75 rules in this study.

34

Figure 15 - Closed loop attitude and trajectory control model (after Austin and Jacobs, 2001).

The genetic algorithm uses a collection of simulated flight responses in its formulation of

the objective function. This allowed the generation of a controller design without linearization of

the vehicle model and dynamics. Stability augmentation was shown through flight simulation at

the low-speed end of the hypersonic trajectory and also at a higher flight speed. Emphasis was

given on further studies to formulate better guidance rules, minimize computation time, selection

of initial conditions and the design objectives.

Optimization of large-scale air combat tactics

Mulgund et al. (1998) in their study developed a software tool for optimizing large-scale

air combat tactics using stochastic genetic algorithms. The tool integrated four key components:

1) autonomous blue/red player agents, with their individual aircraft and tactics; 2) an engagement

simulator used to play out a tactical scenario; 3) performance metrics reflecting engagement

outcome and tactical advantage; and 4) a genetic algorithm (GA) ‘engine’ for performance based

optimization of blue team tactics.

The tool’s capabilities were demonstrated throughout the optimization of blue team

formation and intercept geometry in a series of tactical engagements. The tactics implementation

used a hierarchical concept that built large formation tactics from small conventional fighting

units, facilitating the design of tactics compatible with existing air combat principles. In this study,

genetic optimization was utilized in four different scenarios. It was found that in each of the

scenarios, with respect to casualties, relative advantage, and risk the blue team, that was

supported by the genetic algorithm based optimization system, outperformed the red team.

35

Navigation of the unmanned aerial vehicle

Marin et al. (1999) investigated the use of a genetic algorithm to develop rules that guide

an Unmanned Aerial Vehicle (UAV) by modeling the amount of uncertainty the UAV faced in

terms of probability distributions over grid cells representing terrain. The authors employed the

SAMUEL evolutionary learning system to create a set of rules with which to guide the UAV. For

training and testing, SAMUEL was provided with terrain data on vegetation, slope, hydrology,

roads, and obstacles. The target data consisted of actual tank locations reported every 30

seconds over about an hour. Over thirty tests, the rules developed by the system were able to

locate the tank and successfully monitor its location. The authors suggested that further work

needed to be done for developing more meaningful measures of effectiveness for the system.

The authors would expand the study to include multiple tanks and would attempt to assess the

impact of group information on the evolution of rules.

Control of anti-air missiles

Nyongesa et al. (2001) in their study described the application of genetic programming to

delay-time algorithms for anti-air missiles equipped with proximity fuzes. The study showed that

by applying genetic programming, an evolutionary optimization technique, determination of the

timing could be automated and made near-optimal.

Simulation study with two parameter values showed that the evolved algorithms

accurately tracked the regions, which in a real missile end-game scenario would correspond to a

high probability of destroying the target. Performance measures showed that the root mean

square difference between the actual and predicted were less than 0.01% that implied a near

optimal prediction. Appendix C summarizes the studies reviewed on utilization of genetic

algorithms.

6.4 Hybrid intelligent control systems
Intelligent helicopter flight controller

Zein-Sabatto and Zheng (1997) proposed for an intelligent helicopter flight controller by

combining artificial neural network, genetic algorithms, conventional PID controllers, and fuzzy

logic algorithms. In this study, the design of the controller was based on experimental data

collected from actual helicopter flight. First, a neural network was trained to learn the dynamic

characteristics of the helicopter.

36

Figure 16 below illustrates the block diagram of the neural network based closed loop

system. Based on the neural model, the coefficients of a PID controller used for blade angle

control were searched by using genetic algorithms. The main rotor speed was designed using

fuzzy logic algorithm based on knowledge generated from understanding the aerodynamic theory

and analyzing the helicopter experimental data. The intelligent helicopter flight controller was

formed by combining the blade angle PID controller and rotor speed fuzzy controller. Figure 17

shows the PID-fuzzy intelligent altitude controller for the helicopter.

Figure 16 - Block diagram of the NN closed loop system (after Zein-Sabatto and Zheng 1997).

Figure 17 - The PID-fuzzy intelligent altitude controller architecture system (after Zein-Sabatto and

37

Zheng, 1997).

Simulation results showed that for desired altitude input, the intelligent controller was able

to generate proper control signals for both the blade angle and rotor speed controls. The authors

stressed on future research by implementing the controller and testing the performance with real

flight and then modify and improve the controller.

Fault tolerant flight control system

Idan et al. (2001) introduced an intelligent adaptive neural network based fault tolerant

flight control system that blended aerodynamic and propulsion actuation for safe flight operation

in the presence of actuator failures. Fault tolerance was obtained by a nonlinear adaptive control

strategy based on online learning neural networks and actuator reallocation scheme. Pseudo-

control hedging (PCH) was used to address NN adaptation difficulties arising from various

actuation anomalies that include actuator position and/or rate saturation, discrete control, actuator

dynamics, and partial or complete actuator failures. The control system incorporated a reference

model within the control loop. The control system included approximate dynamic inversion and

pseudo-control hedging compensation.

A nonlinear single hidden layer NN was used to compensate for the inversion error. The

performance of the proposed system was tested on a numerical model of the Boeing 747 aircraft.

Simulation of the study showed that by using the adaptive control system the secondary control

channels were able to satisfactorily control the speed, pitch rate, and thrust. The adaptive system

was also able to successfully identify the model inversion error of the aileron control loop.

Vortex flow control

Joshi and Valasek (1999) proposed for a neural network based controller for bang-bang

type vortex flow control nozzles on a generic X-29A. A full state feedback controller was used for

the continuous control effecters. The neural network designed was a three layer network with

symmetric hidden layers, which optimized a given quadratic performance index. This

performance index allowed the designer to specify appropriate weights for states and control

effecters to satisfy given specifications. The study also compared the Neural Network Controller

to previously designed Model Predictive Variable Structure, and Fuzzy Logic Controllers for the

same benchmark problem. Evaluation criteria consisted of closed loop system performance;

activity level of the VFC nozzles, ease of controller synthesis; and time required to synthesize

controller. The study found that, from a strictly performance point of view, each controller

provided good closed-loop performance. The fuzzy based and neural network based controllers

38

each demonstrated a 9% improvement over the Model Predictive Variable Structure Controller.

From an ease of synthesis point of view, the Model Predictive Variable Structure Controller was

superior to the Neural Controller and the fuzzy based.

The distinct advantage of the neural controller is seen when the operating conditions

depart significantly from the design conditions. The neural controller demonstrated clearly

superior robustness characteristics.

Adaptive model-based control of aircraft dynamics

Melin and Castillo (2002) proposed for a hybrid method for adaptive model-based control

of nonlinear dynamics systems using neural networks, fuzzy logic and fractal theory. This hybrid

system was used for controlling aircraft dynamics systems. For modeling, a generalized Sugeno

inference system was used in conjunction with nonlinear differential equations as consequents of

the fuzzy rules. Neural networks were used for identification and control while fractal dimensions

were fed into fuzzy rule base. Figure 18 illustrates the generic architecture for the adaptive neuro-

fuzzy-fractal control.

Figure 18 - Generic architecture for the adaptive neuro-fuzzy-fractal controller (after Melin and

Castillo, 2002).

The study used three-layer neural networks with Levenberg-Marquardt algorithms.

Back propagation technique was used to tune the data. The simulation of this hybrid system

showed that identification error was reduced to the order of 10-3 and the final control error

using Leveberg-Marquardt was 0.0023.

39

Positioning of military units

Kewley and Embrechts (1998) developed a fuzzy-genetic decision optimization that

solved a problem of positioning military combat units for optimum performance. The optimizer

used a simulation model to evaluate solutions, a fuzzy logic module to map simulation outputs to

a single fitness value, and a genetic algorithm to search the terrain for a near-optimal combination

of unit positions. The results of the study showed that this fuzzy-genetic system outperformed a

human expert during a simulated battle. The mean enemy loss was significantly higher when

fuzzy-genetic optimizer was used compared the human expert. Further, the mean friendly loss

was significantly less for fuzzy-genetic optimization system than for human expert. However, the

authors strongly suggested for the optimization system to be used as a decision aide rather than

a decision maker.

Target motion analysis

Ganesh (1999) argued that fuzzy logic could offer an enabling technology for automated

uncertainty management in the data integration process. In his study, application of this

technology to the fuzzy characterization of contact speed with uncertain information was

demonstrated, and was shown to provide significant improvement in tracking solution quality for

the single-leg target motion analysis problem. The uncertainty in the target end-point location was

described by an enhanced area of uncertainty region that was obtained through combination of

the derived fuzzy range characterization with conventional probabilistic information.

The author expected that significant benefits would be derived from this technology

through (1) increased automation of operator functions, and (2) improved quality of information

provided to support informed decision-making; resulting in reduced manning and attendant cost

savings.

Complex flight control systems

Wills et al. (2001) proposed for new software infrastructure for complex control systems

that exploits new and emerging software technologies. They described a three-level hierarchical

control architecture where high-level control incorporates situation awareness, reactive control

and model selection; mid-level includes mode transition; and low-level involves stability and

control, and augmentation system.

The study also presented an open control platform (OCP) for complex systems, including

those that must be reconfigured or customized in real-time for extreme-performance applications.

40

The OCP consists of multiple layers of application programmer interfaces (API) that increase in

abstraction and become more domain specific at the higher layers. A hybrid control strategy was

adopted by combining PID and neural networks based controls that operated on flight trajectory

(outer loop) and attitude (pitch, roll, and yaw) (inner loop). This OCP was successfully

implemented in a helicopter-based test bed.

Rotorcraft control system

Leitner et al. (1998) developed a full authority, six degree of freedom controller of a

rotorcraft that provides autonomous, high performance, robust tracking of a specified trajectory.

The controller was a combination of traditional PID controller and a neural network based

controller. The nominal PID controller was a two time scale input-output-linearizing controller

which exploited the well known nonlinearities in the equations of motions, but ignored the

variations in the aerodynamically varying quantities. The nominal controller was enhanced with a

simple two-layer adaptive neural network that accommodated for the variations in the dynamics

and guaranteed ultimate boundedness of the tracking errors in the closed loop. The controller

was tested on rotorcraft with highly aggressive, elliptical turn command. The results showed that

there were very small tracking errors in both inner and outer loop commanded variables

throughout the maneuver. The vehicle remained demonstrably stable throughout the maneuver

and all controls remained within their allowable limits. Appendix D summarizes the studies

reviewed on utilization of hybrid controllers.

6.5 Classical techniques in adaptive flight controls
The most widely studied approach in nonlinear adaptive flight control involves the use of

nonlinear transforms and differential equations that results in system exhibiting linear dynamics

(Wahi et al., 2001). This phenomenon is called “feedback linearization”. Feedback linearization

theory has found many applications in flight control research.

Meyer and Cicolani (1980) incorporated the concept of a nonlinear transformation in their

formal structure to advanced flight control. Menon et al. (1991) introduced a two-time-scale

approach to simplify the linear transformations. A special case of feedback linearization

control, called ‘dynamic inversion’, has been investigated extensively for application to super

maneuverable aircraft (Bugajski et al., 1990; Snell et al., 1992; Buffington et al., 1993).

The above studies showed that dynamic inversion was an effective way of compensating

for the nonlinearities associated with high angle of attack flight. However, Brinker and Wise

(1996) demonstrated that dynamic inversion technique could be vulnerable to modeling errors.

Due to this limitation, a variety of robust nonlinear control schemes were proposed. These

41

techniques provided robustness to sources of uncertainty that typically include unmodeled

dynamics, parametric uncertainty, and uncertain nonlinearities (Brinker and Wise, 1996; Adams

and Banda, 1993; Buffington et al., 1993). Krstic et al. (1995) introduced a class of so-called

‘backstepping’ techniques as an approach to the control of nonlinear systems. Backstepping

employed Lyapunov synthesis to recursively determine nonlinear controller for linear or nonlinear

systems with a particular cascaded structure. This paradigm afforded the control designer greater

freedom in choosing the form of feedback control (Krstic et al., 1994; Kokotovic, 1992).

Parametric adaptive control schemes can be divided into direct and indirect methods.

Indirect adaptive control involves online identification of plant parameters. On the basis of this

identification, a suitable control law is implemented (Calise and Rysdyk, 1998). In case of direct

adaptive control, the parameters defining the controller are updated directly. Studies of Sastry

and Isidori (1989) and Kanellakopolous et al. (1991) concentrated specifically on adaptive control

of feedback linearization systems.

Dardenne and Ferreres (1998) presented a simple method for the synthesis of robust

dynamic feedback of feedforward controllers that satisfy classical time and frequency domain

specifications. In Eberhardt and Ward (1999) an indirect adaptive control system approach is

demonstrated via the nonlinear six degree of freedom simulation of a tailless fighter aircraft.

Huzmezan and Mciejowski (1998), in their study, described reconfigurable flight control of a

high incidence research model using predictive control. The paper described a scheme for

fault-tolerant control of an aircraft with a high angle of incidence. The study combined the use

of high fidelity model of the aircraft with model predictive control, and assumed the availability

of information about the faults that had occurred. Looye et al.. (1998) presented the

generation of a linear fractional transformation (LFT) based uncertainty model for a civil

aircraft that started from a nonlinear dynamic model with explicit parametric dependencies.

Boskovic and Mehra (1999) introduced a new parameterization for the modeling of control

effector failures in flight control. The approach was illustrated in numerical simulations of the

F-18 fighter aircraft carrier landing maneuver. Le Gorrec et al. (1998) demonstrated in

improved version of traditional eigenstructure assignment. It produced systems that met

robustness requirements. The proposed technique reduced t solving for a quadratic problem

under linear constraints.

7. NEURO-FUZZY BASED ADAPTIVE INTERFACE
7.1 Fighter pilot cognition and artificial neural networks

Smith et al. (1991) developed a model that represented the major cognitive states and

42

decision-making processes of a fighter pilot during the intercept phase of a two-versus-two air

combat engagement against a single group of adversary aircraft. In the study, and artificial

neural network model was integrated into a hybrid structure containing conventional symbolic

logic and algorithmic elements.

A conceptual framework was formulated that defined the situation awareness (SA)

construct. The conceptual framework of this pilot engagement consisted of four

Adaptive human-computer interfaces

entities: 1) the environment (e), information (i), knowledge (k), and action (a) vectors.

Figure 19 illustrates the flow of data among these entities.

Figure 19 – Situation Awareness Data Flow (after Smith, 1991)

7.2 Cognitive Filter/Mission Tactical Skills

In this study, a database was created that related the time histories of certain pilot

cognitive processes that included situation awareness, workload, a decision-making to

corresponding traces of tactically relevant environmental variables. Subjective evaluation of 32

trajectories with 288 discrete tactical situations was included in the database. The responses from

the database formed the decision vector. A nonlinear algorithmic pilot model was incorporated in

43

the database. The topology and choice of parameters for the model resulted from a knowledge

representation plan based on interviews with air combat tactics and neuro-physiological domain

experts. Figure 20 shows the database model.

Figure 20 – Database of Pilot Model (after Smith 1991)

The overall simulation of the study consisted of four parts: 1) a threat generation model,

2) a vehicle dynamics model, 3) a sensor model, and 4) the artificial neural network (ANN) model.

In the model, the threat generation model provided the capability to present threat aircraft to the

ANN model. An unclassified generic fighter aircraft was used as a basis for the fighter dynamics

model. A deterministic sensor model provided the link between the threat generation/fighter

dynamics and the ANN. The key element of the ANN model was the use of Grossberg’s gated

dipole. The gated dipole is a biologically motivated structure that is based largely upon the

characteristics of the chemical transmitter accumulation and depletion at the synapse. This gated

dipole utilizes a tonic arousal level to lead the structure. It also generates an impulse response to

the sudden onset and offset of the observed events. Figure 21 depicts the network hierarchy.

44

Figure 21 – Network Hierarchy (after Smith 1991)

7.3 Interactive adaptive interface and fuzzy reasoning

Arai et al. (1993) developed an adaptive interface that allowed the interactive adaptation

of both the machine and the user. The interface changed the characteristics of the system

according to the given task considering the user’s skill level, technique, characteristics, and

physical condition. The interface is illustrated in Figure 22. The interface was realized according

to four kinds of knowledge: 1) knowledge of the system, 2) knowledge of the user, 3) knowledge

of the application, and 4) knowledge of interaction between the system and user. Based on this

knowledge, the three main elements that were formulated in the model were: 1) user observation

system, 2) knowledge database, and 3) adaptive assistance system. Since it is difficult to get the

characteristics of the user continuously and adjust from a single observation and the user cannot

cope with sudden change of the system, a reciprocal adaptation of both the system and user was

proposed. In this case, recursive fuzzy reasoning was used to calculate the assistance level.

45

Figure 22 – The concept of a interactive adaptive interface (after Arai, 1993)

Equations (1) and (2) below represent the recursive fuzzy reasoning that was an extension of

the simplified fuzzy reasoning.

The basic assumption was that, by considering the historical changes of the measurement data, it

is possible to estimate the user’s skill level changes. In the simulation game, the galvanic skin

response (GSR) was used as the measurement data. The user’s mental stress was estimated

from using recursive fuzzy reasoning from the GSR data. From the simulation game it was found

that performance under recursive fuzzy reasoning was significantly better than it was in ordinary

46

fuzzy reasoning.

7.4 Visual perception and fuzzy-neural networks
Hungenahally (1995) implemented a fuzzy neural system in the design of a visual display

panel for the purpose of real time operations. This study presents a method of modeling complex

information using fuzzy graphs and then integration of the mapped values with higher level

learning algorithm for the design of an intelligent warning system. In this proposed system, data

acquired from aircraft sensory system were mapped onto fuzzy maps. The information thus

represented served as the input to a rule base and/or fuzzy neurons. The fuzzy neural network

would process the mapped fuzzy information using fuzzy operators in conjunction with a fuzzy

knowledge base. The resulting output of the fuzzy neural network would be displayed in a more

formidable way for the human operator or the pilot. The fuzzy neuron comprised of three

subunits: 1) the cognizer, 2) the signifier, and 3) the kernel.

The cognizer employs cognitive mapping functions to map the phenomena ‘F’ from a

real world domain [xm, xM] to a perceptual domain over [0,1]. The fuzzified inputs were

weighted using a function W(k) where ‘k’ was a parameter dependent on the fuzzy knowledge

on the cognized data. The shape of the weighing function Wn(k) was determined by the fuzzy

knowledge base. The kernel of the fuzzy neuron operated several logical operations on the

cognized and weighted information.

This fuzzy neural network model was implemented in a virtual cockpit design or AVID

system. The role of AVID was to provide a more ergonomic system for displaying the data and

in the development of a complex warning system for the aircraft. Two different systems: 1) with

fuzzy neural rule base, and 2) connectionist fuzzy neural network. Figure 23 shows the overall

AVID system.

47

Figure 23 – Overall schematic structure of the AVID system (after Hungenahally, 1995)

The connectionist network had four layers. Layer one was the aircraft input parameters

(raw signal data). Layer two fuzzified the data by breaking them into linguistic variables and

assigning a mean value. Layer 3 formed the rule base. Each node in layer three served as the

rule parameter with inputs from the relevant nodes of layer 2. Layer four nodes would carry the

warnings to be stored in priority order and screened. The system was implemented in a aircraft

simulator with twenty simulated instrument variables.

7.5 Synthetic vision and fuzzy clustering
Korn and Hecker (2002) studied adverse weather conditions that affect flight safety and

efficiency of airport operations. The study focused on the automatic analysis of millimeter wave

radar images with regard to the requirements for a sensor based landing. It proposed for a

‘electronic co-pilot’, which performed the same tasks as the pilot except decision-making. Figure

24 shows the schematic diagram of the electronic copilot model.

48

Figure 24 – Electronic co-pilot concept (after Korn and Hecker, 2002)

The key features of such system are situation assessment functions that allow automatic

reaction in critical situations. The study focused on the radar image based navigation, i.e.,

determination of the aircraft’s position relative to the runway by analyzing the radar data without

using either GPS or precise a priori knowledge about the airport.

8. INTELLIGENT INTERFACES FOR PROCESS CONTROL

8.1 Interactive interface for process monitoring
Arai et al. (1993) designed an interactive adaptation interface monitoring and assisting

operator by using recursive fuzzy criterion. Authors defined the concept of interactive adaptation

interface as the interface that changing system according the given task considering the user

features such as skill level, techniques, characteristics, physical condition. Two kind of interactive

adaptation were distinguished: 1) the Adaptive Assistance Interface, and 2) the Adaptive

Information Interface (see Figure 25 for application of the interactive adaptation system). An

application of interactive adaptation assistance in the motion level in the adaptive interface for the

simulation Air Hockey game was described. In this application, the system changes the

automation level according to the user performance and the mental state (stress level).

The level of assistance decreases with the increase in the operator skill level, and

increases with the level of the increased stress. Unexpected changes of the interface and

assistance level could surprise and confuse user. In order to prevent sadden changes of the

interface, the method of assistance level estimation was proposed. This method was based on

recursive fuzzy reasoning (Equations 1 and 2) the historical change of the measurement data.

The proposed method allows implementing gradual change of assistance level according to the

49

changes in skill level. The generic structure of the interface architecture consists of three

components, the observation system, the knowledge database, and the assistance system.

The observation system monitors the user state. The Galvanic Skin Reflex

G.S.R. was used to measure the human user’s state and to evaluate the stress level. The

experimental results showed improvement of the sadden assistance changes problem by

recursive fuzzy reasoning.

Figure 25 – The interactive adaptive interface (after Arai, 1993)

9. INTELLIGENT INTERFACES: APPLICATIONS

9.1 Decisional Module of Imagery
Kolski et al. (1993) presented the implementation of AI techniques for intelligent interface

development in the field of the complex process control. The intelligent interface called the

Decisional Module of Imagery (DMI) was integrated into an experimental platform and its

validation showed that it was technically operational. The "heart" of the DMI is an expert system

that manipulates three main objects (the WHAT, WHEN and HOW objects). The interface were

developed in the Laboratoire d'Automatique Industrielle et Humaine, Universite de Valenciennes,

France. The Decisional Module of Imagery (DMI) was integrated into global human – machine

50

system in the automated process control rooms to obtain an overall assistance tool. The system

architecture consist of following main structures: 1) Supervision calculator, 2) Task model, 3)

Operator model, 4) DMI, and 5) Expert system.

The Supervisory Calculator centralizes all of the process scored data. These data are

accessible by both the decision support expert system and the DMI Using these data, the

decision support expert system infers information such as predictive, diagnosis or recovery

procedures. This set of information is transmitted to the DMI, which selects those that can be

presented to the operator. This selection is based on a task model to be performed by the

operator, and on an operator's "model" containing information about the operator. The task model

was initially restricted to problem-solving tasks and results from a previous analysis of fixed tasks

that have to be performed by the operator. This model is based on the general model of

Rasmussen, whereby a task is built through four information-processing steps: event detection,

situation assessment, decision-making and action. This task model contains a set of process

significant variables used by the operator while performing his different tasks. The operator model

integrates a set of following ergonomic data: (1) three possible levels of expertise for the human

operator (unskilled, experienced, expert), (2) the type of displays associated with each type of

operators' cognitive behavior, corresponding to Rasmussen's model, (3) the representation mode

associated with each type of display.

The aims of the DMI are as follows: (1) to select the data that can be displayed on the

screen, taking into account both the operational process context and the informational needs of

the operator; make it possible to operator to supervise the process and to define possible

corrective actions; (2) to define the ergonomic parameters associated with the presentation of

information for the human operator to understand more easily; and (3) to add the corrective

advice to the decision support expert system reasoning and thus to prevent conflicts between

the system and the human operator. The expert system consists of an inference engine; a

knowledge base on the "What"; a knowledge base on the "When"; a knowledge base on the

"How".

9.2 Adaptive information presentation

The DMI adapts itself to the operator by considering information about the following

factors:

(1) the various operating contexts of the supervised system,

(2) the operators,

(3) the cognitive and sensormotor tasks of the operators.

The following criteria were established to lead the "What-When-How" decisions of the

51

interface:

(1) WHAT: All the knowledge and rules needed for each "What-When-How" decision

is gathered in knowledge bases that together with inference engine constitute the

expert system. The inference engine (Figure 26) handles nine types of fact that

represents: 1) What must be displayed, when and how;

(2) The process functioning state, by the use of the facts: "Functioning_ situation",

"Situation severity", "Operator's-task";

(3) The type of the operator and his eventual requests: "Operator's _ class",

"Operator's _ request"; and

(4) The previous state of the interface: "Previous _ What" (was displayed at the last

step).

Figure 26 – The Kolski inference engine (after Kolski, 1993)

Facts (2) to (4) are part of the initial fact base. A supervisor provides the expert system

with the data necessary for development of this base. The inference engine uses this knowledge

base to deduce new facts. The engine starts by inferring on the fact What. The inferred value(s)

of the fact What are added to the fact base and then, the facts When and How are deduced. The

expert system learns to revise and modify the initial knowledge base by following methodology: 1)

The census of all the possible values that are linked to decision criteria about the display is made,

icreating the "Possible Fact Base"; 2) The connection is built between the registered decision

criteria and the potential decisions of the DMI; and 3) Techniques derived from the machine-

learning domain are generated to optimize decision trees.

This tool is based on the algorithm ID3 (Iterative Dichotomizer 3) that classifies

52

decision trees, from the learning set. The experimental platform architecture consists of a set

computerized modules, including:

 The process simulator;

 The human operator assistance functionalities, including: 1) a prediction module; 2) an

alarm treatment module; 3) an action plan generator; and 4) a justification generator.

 The Decisional Module of Imagery, that integrates: 1) a set of knowledge bases

answering the three ergonomic questions: "What", "When" and "How"; and 2) an

inference engine that exploits rules contained in the three knowledge bases.

 A graphical task that manage and animate all the views of the interface, using the

DMI's answers concerning the "What", "When" and "How" questions;

 A database about the human operators ;

 A supervisor module (to manage the coordination and the communication through the

common shared memory).

 A module able to manage failure situations.

 A module able to manage operators' actions and requests.

9.3 Intelligent interfaces for supervisory control
Begg (1994) presented the prototype intelligent graphical user interface developed for

application in the real-time supervisory control systems. The main focus of this application to

provide the intelligence within interface to assists users in locating, determining, and resolving

system problems. The high-level architecture (Figure 27) consists of following: 1) User Interface

(UI); 2) User Interface Resources (URI); 3) Graphics Resources (GR); and 4) Intelligence

Assistance Resources (IAR). The IGI Channel component represents the central communication

channel between operator and Network Management System (NMS) and between operator and

user interface. The User Interface Resources (URI) includes a system model, data logging

services, interaction and display techniques, services providing multiple input and output

mechanism.

53

Figure 27 - High-level architecture (after Begg (1994).

The Graphics Resources (GR) includes display and interaction agents. The Intelligence

Assistance Resources (IAR) includes a collection of declarative knowledge bases and inference

engine that acts on this knowledge. The knowledge bases encapsulates model of the total

context in the IGI is operation. This includes models of the domain, user, the user task, and the

state of interface. Knowledge for changing the state of the interface comes from human factors

guidelines and cases studies results.

Characteristics Graphic System Expert System

Real-time support System-driven events User-

driven events

Inferencing

Process modeling Task complexity Reasoning

UI Design Flexible and configurable good

graphics

Interruption of inferencing

Integration External process interface External process interface

The implementation requirements listed in the table above were used to determine how the high

level architecture. The prototype includes wide range of the graphic techniques for visualization

and control of domain information. The variable zoom techniques were used to assist the user in

the overcoming “lost in the space” problem. Qualitative overviews comprise abstraction of the

low-level data and provide higher level monitoring and problem detection capabilities.

9.4 Intelligent interface for large-scale systems
Yoon and Kim (1996) applied the intelligent interface in aiding the analysis of human

54

actions and human-machine interaction in the large-scale systems. The system was developed

for incident analysis in nuclear power plants in Korea. The intelligent interface was applied in the

COSFAH (computerized support system for analyzing human errors). The purpose of this system

is to assist the analysts who investigate incidents in large-scale human-machine systems. The

support system was developed as a part of computerized HPES (human performance

enhancement system) used in nuclear power plants. The architecture of the system (Figure 28)

COSFAH was developed to reduce the high mental workload in the composition of an event

sequence and to ensure the quality of error analysis. The support system helps the analyst to

compose an event sequence.

The interface module provides two major aiding features: the within-record prompting

feature and the causal context verification feature. These features are presented via the

display and dialog management (DDM) sub-module. There are three inference modules that

produce aiding information for event description. The script matching and guidance module

provides within-record prompts for composing each line, or record, of the event sequence. The

data items composing each record include date, time, record type, error mode for human

actions, anomaly indication for system states, and the involved subsystem, part, and its

attribute. There is also invisible information associated with each line such as causal

relationships with other human actions and system states, related instructions or procedures,

and a free-style note for additional description.

Figure 28 - COSFAH system architecture (after Yoon and Kim (1996).

The data items and their values possess prescribed mutual relationships including requirements

or incompatibilities. Due to the relationships and constraints the line of the event sequence is

composed. The script matching and guidance module uses a script to assist the user in

composing each line.

55

The system performs two types of causal context verification: 1) backward contextual

verification is conducted after each line of event description is put in, and 2) forward contextual

verification is started after the first draft of event description is done. In both cases the system

examines the consistency and completeness of the event sequence. The system uses the

operator model or operational procedures model to check if the activities in the event sequence

are logically well composed according to the model. The aid continuously checks the paths

through which activates are related to each other against the possible paths allowed in the model.

When a mismatch is detected, the aid prompts the analyst to add a record of the missing stage or

redefine the relationships between the current record and the previously recorded activities. Two

inference modules support the causal context verification feature of both directions: 1) a model-

based inference that is based on an operator model, and 2) a rule-based inference that uses

operational requirements. Both reasoning modules are supported by a database that contains

standardized terms for: system, subsystem, parts, and attributes, and the relationships among

them. Operational requirements in the form of production rules are used for the search for

missing information in the event description.

9.5 System interfaces that adapt to human mental state
Takahashi et al. (1994) analyzed the effectiveness of a mutually adaptive interface that

accommodates the form of human machine interaction according to human mental state.

The adaptive interface was applied to control task difficulty in an example task (X-window-based

game, called X-Jewel). The architecture of the adaptive interface is presented in Figure 29.

56

Figure 29 – The architecture of a mutual adaptive interface (after Takahashi, 1994)

The Cognitive State Estimator uses as inputs the physiological measures of the users. The

estimated mental workload is utilized by the Feedback Controller to control the form of

adaptation. The Mental Work Load (MWL) was used as a representative index of the subject

mental state and was estimated by the physiological measures. The physiological measures

depicted in the table below were used as estimation of the mental workload. The time margin

allowed to complete the task was used as the index representing the MWL. It was assumed that

the MWL would increase if the time margin for task completion decreased. The artificial neural

network was adopted as the method for empirical modeling the relationship between the MWL

and observed physiological measures. The adopted neural network was a three layered

feedforward network and is shown in Figure 30. The results of the laboratory experiments

showed a significant positive affect on the performance score.

57

Physiological Features Classification

Absolute Level 1. High 2. Low 3. Normal Heart Rate (/min)

Trend 1. Increase 2. Decrease 3. Steady

Absolute Level 1. High 2. Low 3. Normal Respiration Rate

(/min) Trend 1. Increase 2. Decrease 3. Steady

Blood Pressure (mmHg) 1. Increase 2. Decrease 3. Steady

Skin Potential Response (mV) 1. None 2. Low 3. Medium 4. High level

Blink Rate (/min) 1. High 2. Low 3. Normal

Number of Saccado (/min) 1. High 2. Low 3. Normal

Figure 30 - The configuration of adopted neural network (after Takahashi et al. 1994).

10. ADAPTIVE DECISION MANAGEMENT SYSTEMS

10.1 Adaptive decision support
Fazlollahi et al. (1997) described an adaptive decision support system (ADSS). In an

ADSS, the decision maker controls the decision process. However, the system monitors the

process to match support to the needs. The proposed architecture evolves from the traditional

DSS models and includes an additional intelligent adaptation component. The adaptation

component works with the data, model, and interface components to provide adaptive support.

The prototype was applied in the forecasting, specifically data analysis and model selection, as

58

the area of domain knowledge. In this prototype system, the user is provided with the sales data

plotted against time and asked to examine the plot and select the most appropriate forecasting

model to predict future sales.

The system was built by mapping the conceptual components of the architecture to

different files, programs and other features in KnowledgePro software package. KnowledgePro is

an environment that supports rapid prototyping in rule-based programming for expert systems.

Authors defined ADSS support human decision-making judgments by adapting support to the

high-level cognitive needs of the users, task characteristics, and decision contexts. Adaptation

was achieved by matching support needs with the system support. The support needs of the user

are determined by monitoring the user performance and support history. The support needs of

the task and the contexts are identified through monitoring the decision process and selecting the

appropriate models. ADSS monitor the decision-making process; diagnose

problems/opportunities, and design and implement interventions. Such abilities rest on having

knowledge of the specific user, the problem domain, an expert model of the decision process,

and strategies for intervention. ADSS provides active participation in the decision-making

process. That includes performing tasks such as finding patterns in data, selecting appropriate

models, or acting as critiquing agents.

The proposed architecture for ADSS (Figure 31) is an evolution of the Sprague and

Carlson model (Fazlollahi et al., 1997). ADSS have three subsystems: 1) user diagnosis, 2)

problem-solving, 3) guidance/instruction. Each subsystem incorporates data, model and

adaptation component. The user diagnosis subsystem includes information regarding what the

user knows and what support the system has already communicated to the user.

59

Figure 31 – The ADSS architecture (after Faziollahi, 1997)

The problem-solving subsystem includes the model derived from a theory or stated by

the user for appropriately solving the problem. ADSS do not uses the general model of human

problem-solving processes to guide their automatic intervention in the decision-making

processes. The more attainable descriptive models of specific tasks were used to guide some of

the activities of ADSS. The guidance/instruction subsystem includes knowledge about how to

intervene in the decision-making processes.

The ADSS architecture addresses the functionalities of ADSS, which are (1) to monitor

the decision makers, the decision-making tasks and the decision contexts, (2) to make inferences

on the basis of descriptive models, and (3) to intervene at the discretion of the decision maker to

provide decision support. Each component of the system divided into subcomponents. Data

consists of the problem, the concepts/procedures, and the user history subcomponents. It has

data in the form of independent data files and random access memory (temporal data).

 Data:
 Problem: The problem data are presented to the user in a graphical format (bitmap) as a

time series plot that the user has to analyze:

 Concept/Procedure: the concepts and procedures are assembled in text and graphics

formats, in accordance with the problem type and the problem-solving stage

requirements.

60

 User History: this subcomponent deals with temporal data. However, to maintain a

cumulative user profile, the data from the random access memory is dumped to a trace

(ASCII text/database) file, after every significant event. This file contains data regarding

navigation, time stamping, results, performance, etc. In every new session, the trace file

from the previous sessions of the user is accessed to adjust for the previously learned

concepts and procedures.

 Model: The model component consists of rule-based programs (executables), which

store the various models used by the system. The model component encapsulates

three subcomponents: 1) the problem-solving model, 2) the guidance/instruction

model, and 3) the user diagnosis.

1. The Problem-solving model contains the problem-solving models, represented through

associated concepts and associated procedures. This knowledge was modeled by

programming in Knowledge Pro's rule-based expert system shell.

2. The Guidance/instruction model determines the format of the presentation of the

concepts and procedures that the user may require. The inference is based on the

performance of the user.

3. The User diagnosis model has rules that diagnose and interpret the user history for

determining the strengths and weaknesses of the user in the domain knowledge.

 Adaptation: The adaptation is defined through the expert problem/solving

evaluation, the user performance evaluation, and guidance subcomponent. All

subcomponents are exclusively rule-based, and include the following:

 Expert/Problem Solving: The expert problem/solving evaluation subcomponent

associates the problem file name with the problem-solving knowledge rule block. After

comparing the problem and the expert's opinion, the subcomponent determines the

expert's representation of the required concepts (C E) and the procedures (PE).

 User Performance Evaluation: The user performance evaluation subcomponent

examines user history from the trace file and the user diagnosis knowledge. Using the

two, this subcomponent determines the concepts (C U) reviewed and procedure (Pu)

performed by the user.

 Guidance Module: The guidance subcomponent compares the inferences from the

expert problem-solving evaluation subcomponent and the user performance evaluation

subcomponent, and generates the deviations for concepts (AC) and procedure (AP).

The system bases its inferences of formats and concepts on the user profile and present

user performance (AC and AP). In the prototype system, the outcome for each of the four cases

61

can be either right or wrong. Therefore, as more information is gathered, the decision tree

develops more branches (Figure 32).

Outcome

for Case

B

R = Right

W = Wrong

Figure 32 - Example tree (after Fazlollahi et al. 1997)

10.2 Adaptive interfaces based on function allocation
Scallen and Hancock (2001) examined adaptive function allocation in a multitask aviation

simulation with tracking, system monitoring, and target identification tasks. In this study three

Adaptive Function Allocation (AFA) strategies were examined. In full AFA (auto), the tracking task

was completely automated. In one part-task AFA condition, only the vertical component of

tracking was automated during AFA episodes while the pilot continued to track horizontally (auto-

v). In a second part-task AFA condition, only the horizontal component was automated during

AFA episodes while the pilot continued to track vertically (auto-h). During the AFA episode, pilots

were cued to the shift in control by an additional display. Monitoring and targeting were

62

completely manual at all times. The STARFIRE (Strategic Task Adaptation: Ramifications for

Interface Relocation Experimentation) adaptive allocation test platform was used. The following

tasks were developed to test adaptive function allocation:

 Task1 – Tracking. The tracking subtask was located centrally on the HUD. The tracking

employs a 3-D pathway-in-the-sky that serves to guide the pilot along a pre-selected

route with turns, ascents, and descents in all axes. The pathway is redrawn each second

and presents a 10-sec lead. The task goal was to center the aircraft in the path by

aligning a nose point symbol with a target symbol that travels through the path. The

tracking highway-in-the-sky was imposed on a standard HUD symbology with pitch

ladder, altitude, airspeed, and heading indicators. Whereas the tracking pathway-in-the-

sky is a 3-D representation, the tracking task itself can be reduced perceptually to two

dimensional pursuit tracking.

 Task 2 – Monitoring. The system-monitoring subtask is a configuration of five lights

(two green lights normally on, two red lights normally off, and one yellow light normally

off) and four graduated sliding gauges with criterion-level indicators. The goal for the pilot

is to reset the lights or gauges whenever they deviate from normal status by depressing

response buttons on the instrument panel.

 Task 3 - The target identification. The subtask required the pilot to scan the textured

surface for 3-D targets (spheres, cubes, or pyramids). On detecting a target, pilots

activated a screen menu, cycle through menu options, and selected the menu item that

corresponds to the target shape by depressing switches on the flight stick. Pulling a

trigger mounted on the flight stick completed the task.

The results provide support for the implementation of adaptive allocation based on a

hybrid model comprising elements of operator performance and mission relevant variables.

Implementation of adaptive allocation was an effective countermeasure to the predictable

decrease in tracking performance associated with the initial presentation of a surface target.

10.3 Adaptive interfaces based on distributed problem solving
Siebra and Ramalho (1999) developed adaptive interface model based on a distributed

problem solving architecture. A Distributed Artificial Intelligence architecture consisting of four

agents was adopted, the agents being perception, modeling, adaptation, and execution. The

Perception Agent receives and processes inputs from the user and the main system to which the

interface is attached. The Modeling Agent is responsible for the initialization and updating of the

user model, which contains information about three generic stereotypes (beginner, intermediate

and expert users) plus an individual model for each user. This information is represented by a

hybrid formalism combining production rules and objects. The user is characterized by static

63

(e.g., user login) and dynamic (e.g., user abilities) features and his/her stereotype are dynamically

updated by means of production rules.

The Adaptation Agent has three basic functions: adapts the interface, fix anomalous

actions and sets training sessions to the user. The knowledge necessary to accomplish these

tasks is represented in the domain model. It contains the interface description (the interface

objects, such as windows, icons, buttons, and menus), as well as generic adaptation strategies,

including bug library, advising messages, etc. The adaptations are implemented as production

rules of the type IF an error F occurs AND the user level is N THEN execute adaptation A. The

Execution Agent implements the execution of actions and presentation of help, advising, error

messages and information to the user.

When the user is not able to click in a valid area with a mouse, the possible solutions are:

(a) to increase the icon or button size; (b) to consider a valid area around the button or icon, or (c)

to propose training session for the user, in the form of a “shot the target” game. Athena was built

as a modular, reusable, extensible and portable interface. Due to this, Athena can be easily

extended and attached (plugged in) to different systems.

11. GRAPHICAL INTERFACES FOR AVIATION SYSTEMS
11.1 Interface for flight management system

A graphical man machine interface for an Advanced Flight Management System (AFMS)

was developed in the Department of Technical Computer Science (LTI) at RWTH Aachen has

developed (in close cooperation with NLR (National Aerospace Laboratory, Amsterdam,

Netherlands) (Marrenbach, Kraiss, 2000). The new user interface was created to replace today’s

Control and Display Units (CDUs). The alphanumerical flight plan editing was replaced by a

graphical user interface. A software prototype of such a CDU has been created, using Seeheim

model and Statecharts for the definition of this interface.

In the new user interface was used a graphical output device. Furthermore, the system-

oriented composition of functions was transferred into an operational structure. Therefore the

functionality of the AFMS was partitioned into four levels, called main task, subtask, procedure

and function. The main control elements of the AFMS are the main task and subtask selection

keys, which are used to enter the main menus and submenus respectively. The line selection

keys are used to enter the respective procedure and function. The rotary knob is used in order to

change elements in various selection tapes and the touch pad is used in order to control a cursor

on the graphical display.

The AFMS provides two ways of access with different functionality: a function-oriented

and an object-oriented access mode. In the function-oriented mode, all functions are organized

in a so called ’menu tree’. The “menu tree” contains ’branches’ and ’subbranches’ with the

64

column and line selection keys to access the needed function. The highlighting of the selected

menu informs about top level (main menu) menu. The purpose of object-oriented mode, i.e. the

quick modifications or alterations in flight, allows for direct access to the object on which a

function has to be executed by moving the cursor of the touch pad to it. There are only a limited

number of functions, which can be used for a selected graphical object. These functions can

easily be associated with the CDU´s line select keys. Supplementary to the graphical

representation of the flight plan (map-mode, plan-mode, vertical mode) an alphanumerical page is

implemented (it is easier for the user to gain an overview of the whole constraint list if it is

presented in this way). The benefits of the proposed interface design are as follows:

. • The object-oriented approach to design reduces the number of possible functions

during selection.

. • Fewer keys are necessary, which results in more room for the larger display and in

larger buttons, making it less likely to hit the wrong button by mistake.

. • The graphical user interface simplifies translating the pilot’s idea of a flight plan into

the system language.

. • The comparison between the Alphanumeric CDU and Graphical ACDU showed that

number of actions needed to complete was reduced up to 50%.

11.2 A multi-windows flight management system
Abbott (1997) developed an experimental flight management system (FMS) interface to

examine the impact of the primary pilot-FMS interface, the control display unit (CDU), on initial

FMS pilot training. The main purpose of the research was the examination of the experimental

multi-windows CDU concept based on graphical-user-interface (GUI) techniques. The FMS

databases included U.S.-wide information on very-high-frequency omnidirectional ranges

(VOR’s), low- and high-altitude airway structures, airports, and the geometry of airport instrument

landing system (ILS) and runway configurations. Databases also were included for specific

standard instrument departures (SID’s), standard terminal-arrival routes (STAR’s), and

approaches for a limited number of selected airports. Performance optimization was based on a

Boeing 757 class of airplane that was also the performance model for the airplane simulator used

in the evaluation. This optimization provided climb, cruise, and descent schedules; fuel flow

estimation; estimated waypoint crossing speeds and altitudes; and waypoint arrival-time

estimation. The algorithms also accommodated pilot-entered climb, cruise, or descent speeds;

cruise altitudes; and waypoint speed and altitude crossing constraints. The FMS could

simultaneously handle four paths or profiles: a primary or active path, a modified active path, a

secondary path, and a data-link path. The navigation display (ND) on the simulator instrument

panel could display a primary or active path and either a modified active path or a secondary

path. Two CDU concepts were developed for this study: a generic, baseline concept and a

65

graphical-user-interface (GUI) CDU concept. Both CDUs used the same underlying experimental

FMS software that included the databases, path-definition routines, and path-optimization

techniques. CDU’s were physically implemented on a 10-in. diagonal, 16-color liquid-crystal, flat-

panel display. The authors indicated that initial design was aimed at evaluating the effects of the

multiple windows and direct-manipulation aspects of GUI designs compared to conventional

designs. Therefore three major features of GUI were not used in proposed CDU design: pull-

down menus, resizable windows, and window scroll bars.

11.3 A navigation hazard information system
Kroft & Wickens (2001) examined effect of three de-cluttering techniques: fixed low

lighting, interactive low-lighting and interactive de-cluttering. These de-cluttering techniques were

applied to integrated high-clutter digitized displays containing navigation information and air

hazard information. Low-lighting displays present one domain of information at a brighter

luminance level than the other aspects of the display, while the de-cluttering display removes a

domain entirely. Interactive displays allow the user to manipulate, which domain is highlighted,

and fixed displays cannot be changed. The fixed low-lighting display did not produce higher

accuracy than the baseline large display, nor did it reduce subjects’ response times. According to

the authors, this lack of a benefit for low-lighting may be the result of a low readability of the low-

lighted information, particularly when the ground symbology was low-lighted.

The interactive display produced longer response times that are directly related to the

number of time subjects toggled between views. In addition divided attention questions produced

longer response times and more toggles than focused attention questions. The authors

concluded that the benefit of reduced scanning generally outweighs the cost of increased clutter

produced by display integration. This effect (trade off) was more pronounced for divided attention

questions than for focused attention questions, as predicted by the proximity compatibility

principle.

11.4 Elastic Windows Interface
Kandogan & Shneiderman (1997) described the Elastic Windows Interface as an

alternative to other windowing systems. The elastic windows design is based on three principles:

1) hierarchical window organization, 2) space filling tiled layout, and 3) multi-window operations.

The hierarchical window organization supports the user’s structuring their work environment

according to their roles. It allows users to map their role hierarchy onto the nested rectangle tree

structure. Hierarchical grouping of windows is indicated by gradually changing border colors

according to the level of the window. This approach was applied in the hierarchical organization

of different roles of a university professor: university research and teaching, industry, and

66

personal. The hierarchical layout clearly indicates the hierarchic relationship between the

contents of the windows by the spatial cues in the organization of windows. Hierarchical grouping

provides role-based context for information organization. It also supports graphical information

hiding capability where window hierarchies can be collapsed into a single icon (or other

primitives) making the approach scalable. Collapsed hierarchy of windows can be saved and

retrieved, which allows users to reuse a previous window organization

The multi-window operations on groups of windows can decrease the cognitive load on

users by decreasing the number of window operations. In the case of Elastic Windows, multiple

window operations are achieved by applying the operation to groups of windows at any level of

the hierarchy. The results of operations are propagated to lower level windows inside that group

recursively. In this way, a hierarchy of windows can be packed, resized, or closed with a single

operation.

The space-filling tiled approach was applied for more efficient use of screen space. In the

Elastic Windows, groups of windows stretch like an elastic material as they are resized, and other

windows shrink proportionally to make space. Users are given flexibility in the placement of sub-

windows in a group. There is no strict horizontal or vertical placement rule within window groups.

The extent of window operations is limited to the windows in the same group and their sub-

windows. Effects in the upper levels are propagated down to sub-windows recursively.

11.5 Adaptive interfaces in teleoperation
Yoneda et al. (1996) developed an interactive adaptation interface for multimedia tele-

operation of a rough terrain crane system. The system has multimodal display that provides force,

visual, and acoustic information. The described interactive adaptation interface can adapt the

system to an operator considering his/her skill or knowledge, and psychological state. The

interface architecture is portrayed visually in Figure 33 and consists of the following elements:

• I/F: I/F transfers operator’s command (the angle of joystick) to the goal velocity of each

joint.

• Operator Classifier: The evaluation of the operator skill is based on the history of the

payload oscillation and joystick command inputs. Operator’s psychological state is

evaluated by the bionical signal –G.S.R.

• Time constant tuner: Time constant of the operation is regulated by means of the

Recursive Fuzzy Inference.

- Multimodal Display: presents information needed for good and easy operation

based on the state of payload or the jib.

- Visual display: a) shadow of the payload; b) arrow – indicates the desirable joystick

control direction to suppress the oscillation; c) bars – bars on the right means the

current operational angle of the joystick, and the bars on the left means the

67

desirable operational angle of it; d) side view: state of the jib, wire rope, the

payload oscillation, and goal point in the jib hoist.

- Acoustic display: a) oscillation sound: the higher tone- the larger amplitude, and b)

job-hoist sound: the higher tone – faster jib motion.

- Force display: operator feels force feedback from the joystick according to the

difference between desirable and actual control input. The force display adapt to

the operator skill level by changing the strength of the force feed back.

Figure 33 - System architiecture (after Yoneda et al. 1996).

Yoneda et al. (1996) also examined the proposed system on a crane simulator

developed for this purpose. The operational experiments confirmed the effectiveness of the

proposed crane operational assistance system.

11.6 Adaptive interfaces for driving
Piechulla et al. (2003) proposed an adaptive man–machine interface that filters

information presentation according to situational requirements to reduce the driver’s information

workload. The filter incorporates a projective real-time computational workload estimator which

was based on the assessment of traffic situations detected from an on-board geographical

database. Workload estimates was refined by data from sensors that monitor the traffic

environment and variables of driving dynamics. The prototype was applied to the problem of

mobile phone conversations that impairs driving performance. The prototype system was

validated in a demonstrator vehicle. The vehicle is equipped with the developer version of a state-

of-the-art adaptive cruise control system (ACC), which is based on a radar sensor, and an

experimental heading control system (HC) based on computer vision. HC searches for lane

markings and employs small forces to the steering wheel, which serve as indicators how to steer

68

in order to stay in lane.

Workload estimation was made with a software module that predicts the driver’s mental

strain and reduces additional mental workload resulting from displays, signals, and system

messages by postponing less important messages or canceling those messages altogether. The

module uses input from car sensors and from an experimental digital map that we call an

enhanced database for driver assistance systems (EDDAS). Workload estimation was carried out

in a two-stage process. In stage one, a basic estimate was generated by protectively tracking the

EDDAS map to identify the oncoming traffic situations and looking up the respective workload

indicators for these situations. In stage two, this basic estimate is fine-tuned using information

about dynamic aspects of the driving situation. A map-tracking algorithm matches the vehicle

position to the EDDAS map and generates a forecast of the route.

Their experiments showed that prototype system is operational in a demonstrator vehicle.

Whenever the workload estimate exceeds a threshold value, incoming telephone calls are

automatically redirected to the telephone mailbox without notifying the driver. An evaluation field

experiment that employed objective and subjective methods of assessing workload yielded

promising results in terms of the possibilities of reducing workload by means of the adaptive

interface.

12. ADAPTIVE INTERFACES FOR COMPUTER DATABASE APPLICATIONS
12.1 Visual access interfaces

An adaptive interface was used for multi-paradigmatic visual access to databases

(Catarci et al., 1996). The aim of this development was integration of different interaction

paradigms into a friendly interface for integrated heterogeneous databases. Visual Query

Languages (VQLs) based on the visual representations were used to depict the domain of

interest and express the related requests. Since certain interaction modalities and visual

representations are more suitable for certain user classes, the adaptive interface was applied.

The system proposed by Catarci et al. (1996) suggests to the user the most appropriate

interaction modality as well as the visual representation. The interface is adapted according to the

user model that provides different visual representations of both data and queries. The visual

representations were characterized on the basis of the chosen visual formalisms, namely forms,

diagrams, and icons. The system architecture consists of following basic elements: 1) Visual

Interface Manager; 2) User Model Manager; and 3) GMDB & Query Manager. The Visual

Interface Manager provides multiple data representations (form-based, iconic, diagrammatic, and

hybrid) and the corresponding interaction modalities together with the possibility of switching

among them. For each underlying database a window is available, which can be further

subdivided into several child windows, each one displaying the database according to a specific

69

visual representation. The Visual Interface Manager selects the visual representation most

appropriate for the user, according to the user model provided by the User Model Manager. Such

a representation is displayed in the primary child window. The query output, such as text, data or

image, appears in a separate child window.

Several visual representations were used in the interface. Form-based representations

visualize prototypical forms where queries are formulated by filling appropriate fields.

Diagrammatic representations present various types of concepts available in a model with

different visual elements. The iconic representation uses sets of icons to denote both the

objects of the database and the operations to be performed on them. The hybrid representation

is a suitable combination of the above representations. The combination of visual

representations is guided by the user needs and the application requirements. Often, diagrams

were used to describe the database schema, while icons used either to represent specific

prototypical objects or to indicate actions to be performed. Forms were mainly used for

displaying the query result.

The User Model Manager is responsible for collecting data and maintaining a knowledge-

base of the user model components, and provides the most appropriate visual representation and

interaction modality according to the user skill and needs. Such a model is dynamically

maintained according to the history of the interactions. The database user model consists of three

components: 1) the Class Stereotype, 2) the User Signature, and the 3) System Model. The

Class Stereotype component consists of different classes of database users. User classification

was based on following dimensions: professional or non-professional, occasional or frequent,

repetitive or extemporary. Those dimensions are used to determine the user features: frequency

of the interaction, repetitiveness of the query, structural complexity of the query, and familiarity

with the database content. The User Signature component contains compressed history of user

interactions. The Class Stereotype and the User Signature components together constitute the

individual model of a single user.

The System Model component is the user's own model of the system organization. When

the User Model Manager construct and store the user's system model, it can suggest the view of

the database most appropriate for the user expectations. Moreover, the cost of database search

can be reduced during querying. The types of visual representations most appropriate for each

user stereotype were defined. As a consequence, once a user has been identified as belonging to

a class characterized by a specific stereotype, the system can suggest the visual representation

appropriate for that stereotype. However, the user has always the freedom of shifting to a

different interaction paradigm based on another visual representation. The appropriateness of a

visual representation for a class of users was determined on the basis of the analysis of the

advantages and disadvantages of the each interaction paradigms exploiting that visual

representation. The system uses two sets of translation algorithms, one for translating a database

70

expressed in any of the most common data models into a Graph Model Data Base (GMDB), and

one devoted to implement the consistent switching among different visual representations during

query formulation.

12.2 Adaptive interface for generic expert system
Harrington et al. (1996) described an adaptive user interface developed for a generic

expert system PESKI (Probabilities, Expert systems, Knowledge, and Inference). PESKI provides

a user with knowledge acquisition, verification and validation, data mining, and inference engine

tools. PESKI utilizes a Bayesian knowledge base to provide reasoning power that is not designed

around a specific application domain. This system allows adaptability to any domain in which it is

used. Furthermore, PESKI uses multiple communication modes, allowing a user to select the best

possible way to view and input the information contained in the system. The general purpose

expert system, such as PESKI, is assumed to have four general types of users: application users,

application experts, knowledge engineers, and computer scientists.

The system architecture is composed of three main layers: 1) a Graphical Layer, 2) an

Intelligent Assistant Layer, and 3) a System Layer. The Graphical Layer creates a graphical work

environment for the user. Typical interface objects such as windows, menus, and text entry lines

are combined into a functional display that is customized to meet the user's work environment

needs. The graphical support is extracted through any number of different interface development

tools, and choice of the appropriate tool is based on the architectural platform where PESKI is

being used. The Intelligent Assistant manages the interface control tasks through a three-layered

construction: the adaptation layer, the adaptive layer, and the communications layer. All

transactions between the expert system and the user traverse these three layers for translation

and management of data.

The adaptation layer acts as an advisor to the user for accomplishing user-performed

adaptations. This advisor duty is divided into two tasks: helping the user to make adaptations and

advising the user on potential adaptations. When helping the user performs an adaptation, the

adaptation layer provides on-line instructions to the user on how to effect the adaptation. The

adaptation layer leads the user through the adaptation step by step and gives the user feedback

during the process. The adaptive layer of the intelligent assistant consists of those elements of

the interface that adapt themselves based on perceived user needs, including menus and object

layout schemes. The adaptivity layer keeps a log of all interface-enacted adaptations for the

user's viewing. The communications layer of the intelligent assistant is responsible for managing

all the data that is passed between the user and the expert system. This layer is equipped with

the three communication tools: a natural language interpreter, a graphical interpreter, and a

structured text interpreter. With the available communication tools, the user is given the ability to

explicitly choose which communication fits their need based on the domain of the data. The

71

System Layer of the architecture allows connectivity between the user interface and the expert

system through a series of tool drivers, which are the link between the interface and the

knowledge base, providing the functionality to perform work on the expert system.

12.3 The PUSH Project
Höök et al., (1996) applied the metaphor of a “black box in a glass box” to provide the

predictability and transparency for the adaptive interface. In the Plan and User Sensitive Help

(PUSH) system, the complex inferences of users’ goals were hide (in the black box) and a quite

simplified view on what is going on (in the glass box) was presented to the user. The user sees a

straightforward relation between inferred goal (as unobtrusively presented to the user) and choice

of adaptation, therefore basis for predictability are provided. The hypermedia page in this on-line

information system provides a complete description of a particular object structured as ordered

sequence of typed information entities. Each type of objects in PUSH has its own assortments of

information entity types that are used to describe an object of this type. A specific feature of

PUSH is that each information entity is a reasonably big portion of hypertext.

To protect users from the information overflow and to help them to find a required piece

of information, the system use hiding, i.e. it presents only those types of information entities about

the current object that are relevant to the current goal of the user (the goal can be set by the user

or deduced by the system). At the same time, to keep the adaptation transparent, the system

maintains the stable presentation order of the information entities and never hides non-relevant

entities completely: the titles of hidden non-relevant entities are always shown. In the interface,

each query generates an answer view that contains all information that possibly may fit the query.

This presentation was named as answer page, and represented as a dynamically generated html-

page. Some of the information is presented in the view as “hidden” pieces of text or graphics,

represented by the mouse-sensitive words or icons. Other types of icons represent navigational

maneuvers to other “pages” of information. If the user is not satisfied with the system's decision to

show or to hide a particular entity, he can collapse or uncollapse the content of the information

entity by clicking on an icon near its title. The information presented to the user is affected in two

ways by the selection of a task: 1) the information selection that are deemed relevant for the

current task are opened at the time an answer is generated, and 2) follow-up questions are

organized into two-level menus, where the first level contains only a few questions, relevant to the

current task, and the second level contains all follow up questions.

12.4 Integrated interfaces for web-based applications
Espinoza (1996) proposed an integrated, interactive, multi-modal, World Wide Web

(WWW) interface with an adaptive, information filtering system. The combination of multi-modal

72

interface with adaptive information filtering were applied to solve the problem of information

overload and to meet user needs. This interface provided remote access to the PUSH (Plan- and

User Sensitive Help) system using web access. The interface was described as multimodal since

its produce both graphics and text, and accepts input as text, menu choice, pointing, and

selection. Espinoza (1996) created an answer page consisting of graphs and text that the user is

allowed to manipulate. The users can navigate in the information space by clicking in the graphs

or by posing questions via menus. They can manipulate the answer generated by the system by

closing or opening parts of the text. They can also pose follow-up questions on 'hot-words' in the

text.

The selection of presented information is based on the user’s information-seeking task,

which was inferred from their interaction with the system. The user can also actively change the

assumed task, and thereby control the adaptive behavior of the system. The realization of the

interactive web-based interface and adaptive information filtering is based on a separation of the

database and the interface. The database was implemented in SICStus Prolog Objects and

serves the remote Netscape clients. The interface was realized using dynamically generated

html-pages, and graphs that are generated at the site of the Netscape client using a transferred

Java applet.

Interface architecture

The answer page is divided into three types of frames. Such frames are subparts of the

Navigator application window that can be scrolled and resized independently of each other and

that each contain a web page: 1) textual description of the method consisting of an introduction, a

description of the underlying purpose behind the method, and some other information pieces not

visible on the screen; 2) graph with the process in the middle, its super-process, 'subD', sub-

activities, input and output objects; 3) guide to the textual description, consisting of the headers

to the information pieces. The ones marked as bold are those currently available in the textual

description. The system is interactive on several levels. It is interactive at the interface level,

allowing the user to manipulate the output from the system. It is also interactive in terms of

allowing the user to control the adaptivity:

1) Graphs. The graphics frame serves two purposes. Firstly, it provides a comprehensive

view of the information space at the current position; the graphs display all objects related

to the current query as well as their relative positions. This gives the user an overview of

the domain and also a means for navigation. Secondly, the graphs allow the user to

navigate in the information space by clicking on objects in the graph. As the user clicks

on an object the view changes to portray the new object and its neighbors, and at the

same time the appropriate textual information is retrieved and presented.

 2) Text. When the user has clicked on an object, they can also get a textual description of it.

73

There are many aspects that may be described: how to produce the object, how to work

in the process, examples of objects, etc. The user can either ask for a general summary,

or just one specific aspect. The users can also manipulate the text frame. They can

close or open the information entities through clicking in the guide frame next to the

textual frame, and thereby create an answer page that is better fitted to their needs.

3) Hot-words. The user can pose follow-up questions on concepts that are crucial to the

understanding of SDP. The term hot-word is used to denote a marked word in the text

that is a link to another piece of hypertext. The list of alternative follow-up questions that

can be asked about hot-words is presented. The hot-words and their associated follow-up

questions allow the users to increase their knowledge of SDP. If they are already

knowledgeable in SDP, they do not have to read irrelevant information about these basic

concepts. 4) Menus. The user can also navigate by composing questions via menus,

which is an important alternative to navigation in the graphs. A typical question can be

'describe a process' which would render the answer page. A more specific question could

be 'provide an example of process', which would result in an answer page with only one

information entity open: the example text.

Several methods were used to create interactive environment for the web: a Java program for

client side graphics handling, a CGI program for dynamic generation of web pages, as well as an

underlying adaptive database, implemented in SICStus Prolog objects.

System architecture

The system architecture consists of following elements: 1) Netscape Viewer, 2) Page

Generator, 3) User Modeling Component, and 4) POP knowledge database. Page Generator

sends the query parameters to the POP (the database part of the PUSH system) Prolog program.

The user's information seeking task was used, as a tool for determining which information entities

would be most relevant to the user in a specific situation. The hierarchy of information seeking

tasks was constructed on the basis of a task analysis on user's behavior in their daily work

situation. A combination of a user-controlled, and self-adaptive approach to the determination of

the current user task was used. A self-adaptive approach is one in which the whole adaptive

process is done by the system alone: the system initiates, proposes, decides, and executes the

adaptive behavior. The users determine with which task they are initially working. The plan

inference (i.e. inferring the users' underlying goal from their actions at the system) is applied

continuously to update the user’s task. The user can at any time change the inferred task to some

other task.

74

12.5 Adaptive hypermedia applications
Höök et al. (1997) proposed a service infrastructure for adaptive hypermedia called

edited adaptive hypermedia. The service involves two types of actors, information brokers and

information users, with their respective tasks of collecting, adapting, and reading the information.

It was suggested that a solution where individual user interests and preferences are stored in

user profiles, available both to the information broker and to the information user. The outgoing

information is annotated as to allow for individual adaptations for the information user. Finally, the

information user's reading behavior is monitored and feedback is provided to the information

broker through the user profile. Höök et al. (1997) proposed to use user models in two ways in

the edited adaptive hypermedia service. Firstly, information brokers apply user models to select

and filter out relevant information to the reader community, and to structure and annotate the

distributed information. Secondly, the information user environment maintains a model of the

individual user to provide useful adaptations in the distributed information. These two types of

models interact in complex ways. The end user environment only can adapt using such

annotations that the information broker has provided. In a closed information domain, an

appropriate selection of annotations can be decided upon in advance, but brokers must be

provided with feedback on how well the selected annotations worked in practice.

Öquist and Goldstein (2003) described the adaptive RSVP that mimic the reader's

cognitive text processing pace by adjusting each text chunk exposure time in respect to the text

appearing in the RSVP text presentation window. The Rapid Serial Visual Presentation (RSVP)

technique is used for dynamic text presentation. RSVP presents the text as chunks of words or

characters in rapid succession at a single visual location. This format offers a way of reading texts

on a very limited screen space. The exposure time of each text chunk is calculated on basis of

the set presentation speed and on how much that can be displayed in the text presentation

window. The adaptivity of RSVP is based on the eye-mind hypothesis (Öquist et al., 2003) i.e.

that the eye remains fixated on a text chunk as long as it is being processed, the needed

exposure time of a text chunk can be assumed proportional to the predicted gaze duration of that

text chunk.

Öquist et al. (2003) developed two adaptive algorithms in order to decrease the task load.

The first algorithm adapts the exposure time to the content of the text chunks whereas the second

also looks to the context in the sentences. In content adaptive mode, the exposure time for each

text chunk is based on the numbers of characters and words that are being exposed for the

moment. In context adaptive mode the exposure time for each text chunk is based on the

following: the result of content adaptation, the word frequencies of the words in the chunk and the

position of the chunk in sentence being exposed. The width of the RSVP display window was 25

characters wide with the text presented left justified in a 10-pt. sans-serif typeface.

Brusilovsky (1996) described the ELM-ART (ELM Adaptive Remote Tutor) system which

75

is a web-based Intelligent Tutoring System (ITS) to support learning programming in Lisp. In

ELM-ART several adaptive techniques were applied to support students in navigation and

learning of course materials. ELM-ART was considered an on-line intelligent textbook with an

integrated problem-solving environment. The course material contained in ELM-ART is stored in

hypertext form. ELM-ART provides many methods for browsing the course. The system uses two

adaptive hypermedia navigation support techniques- adaptive annotation and adaptive sorting of

links.

Adaptive annotation uses visual cues (icons, fonts, and colors) to show the type and the

educational state of each link. The system maintains an individual permanent model for each

registered student. The student’s version of ELM-ART uses to distinguish several educational

states for each page of material (including problem, example, and manual pages): the content of

the page can be known to the student, ready to be learned, or not ready to be learned (the latter

case means that some prerequisite knowledge is not yet learned). The icon and the font of each

link presented to the student are computed dynamically from the individual student model. They

always inform the student about the type and the educational state of the node behind the link.

Adaptive sorting is used to present similarity links between cases. Since the system can measure

the similarity between each two cases, it can also sort all cases related to the current one

according to the similarity values. Links are presented in sorted order - the most relevant first - so

the student always knows what the most similar cases are.

The system also provides the Intelligent Problem Solving Support. ELM-ART predicts the

student way of solving a particular problem and finds the most relevant example from the

individual learning history. Answering the help request (e.g. show example), ELM-ART selects the

most helpful examples, sorts them according to their relevance, and presents them to the student

as an ordered list of hypertext links. The most relevant example is always presented first.

Furthermore, the page adaptiveness was applied. All pages presented to the user are generated

adaptively “on the fly” when the user requests them. To generate pages, the system uses the text

of the course, and knowledge about the structure of the course. When assembling a page of the

course, ELM-ART extracts the text of the requested unit from the HTML file and generates the

rest of the page (header, footer, hierarchy links and content based links) from the knowledge

base. The situation with reference manual pages is even more flexible, because for most of them

not only links, but the content itself is generated from the knowledge base. With this approach, all

adaptive features of ELM-ART presented above such as additional headers for not-ready-to-be-

learned pages or adaptive annotation of links according to their educational state can be easily

implemented.

76

12.6 Auto-adaptive multimedia interfaces
An Auto-Adaptive Multimedia Interface (AAMI) was proposed for process control (Viano

et al., 2000), by using the general-purpose framework for applications in the Electrical Network

Management and in the Thermal Power Plant Supervision. The described work was carried out

in frame of the European ESPRIT project: AMEBICA. AMEBICA is a generic adaptation system

that maps events of discrete levels of significance - at the input – to appropriate rendering

characteristics at the output. AMEBICA has two interfaces: 1) the Process Model Agent, and

2) the Abstract Rendering Interface that allow it to interact with its environment. The Process

Model identifies domain specific occurrences in the operator or system environments and

triggers AMEBICA. The Abstract Rendering Interface takes general commands from AMEBICA

and renders them in domain dependent representations. The interface architecture consists of

the following components:

• Process Model Agent, which monitors and acts on the process information using its

knowledge of the process to translate system dependent calls to AMEBICA calls.

• Media Agent that is responsible for rendering of a stream of process information.

(contains design time mappings),.

• Rendering Resolution Agent, which interacts with the Human Factors Database,

Environmental Agent and Operator Agent to decide upon the best renderings for a certain

situation.

• Environmental Agent that captures information on the current environmental conditions in

the control room.

• Human Factors Database; a set of key HCI heuristics used to help decide the most

appropriate rendering.

• Presentation Agent, which has a continuously updated view of resource usage on the

interface in all media.

• Media Allocator Agent that makes the final decision on the choice of rendering, based on

interactions with Presentation Agent.

• Operator Agent that monitors and logs the operator’s actions (mouse clicks and keyboard

operation).

Adaptation rules are shown in the following matrix.

77

Operator Response
Process Status
Normal

Process State
Disturbed High
Information Rate

Process State
Disturbed Low
Information Rate

 OK OK OK

Normal Process triggering Process triggering Process triggering

 only only only

Delayed (relative to

expected response)

(1) Inattentive

Accentuate

presentation

(4) Overloaded. Filter

information Simplify

presentation

(7) “Frozen” Repeat

recent information. Try

alternative

representation

Erratic (occasionally (2) Inattentive (5) Overloaded. (8) Partial loss of

wrong displays or Accentuate Simplify displays, comprehension

commands) presentation (specific) Remove information Switch modality

Disorganized

(constantly wrong

display or commands)

(3) Confused, loss of

control Go to overview

presentation

(6) Sever loss of

control “Voice of God”

(9) Complete loss of

comprehension. Go

one level up.

Summarize

information

A set of conditions that triggers adaptation was also proposed as a function of the deviations

related to the human operator, machine, and the process. For a process, three distinct system

states were identified: 1) normal process status, 2) process state disturbed with high information

rate, and 3) process state disturbed with low information. The system identifies the operator

deviation states on the basis of the inadequate operator responses. The following set of the

operator states were differentiated: 1) normal state, 2) delayed (relative to expected responses);

3) erratic (occasionally wrong display or commands), and 4) disorganized (constantly wrong

display or commands). The following matrix of adaptation rules were developed on the basis of

the sets described in the table above. The following adaptation techniques were developed for

the prototype system:

78

• Highlighting of relevant information according to the actual "scenario". Dynamical

detection of the most pertinent and relevant information should manipulate the display

parameters to highlight it.

• Adaptation of the display space organization and optimization according to the current

"scenario".

• Adaptation of the information representation by selection and manipulation of

presentation modalities. Incoming information can be displayed by using a set of

alternative modalities selected on the basis of the current "scenario" and of the interface

status.

• Time organization. The adaptation action follows the evolution of the "scenario" over

time.

12.7 Adaptive interface for knowledge retrieval system
Nguyen et al. (2000) developed an active interface prototype for the Knowledge Retrieval

System. The prototype under development was planned to test on the Unified Medical System

(UMLS). The interface agent is based on the Core Interface Agent (CIA) architecture. The

purpose of this architecture is to provide assistance to the user by maintaining an accurate model

of the user’s interaction with the target system environment. Interface agents autonomously react

to changes in user intent as well as changes to information sources and proactively and

dynamically constructs the appropriate queries for the various (heterogeneous) source. The

adaptive interface suggest to the user additional related information. A user interacts with a target

system (e.g. a medical database querying system), typically via direct manipulation interface such

as through menu selections, mouse clicks, and button pressed. The user’s interaction with the

target system is reported to CIA architecture as observations. The interface agent uses these

observations to infer what a user is doing within the environment. Based on the knowledge of the

environment that the active user interface has and the user’s current interactions with the system,

the interface agent determines the user’s goal with the highest expected utility and offers a

suggestion to the user via the target system.

The user model consists of three components: 1) a user profile; 2) Bayesian network

model; 3) utility model. The user profile is used to store the static knowledge about the user,

including his demographic data, and skills. The Bayesian network model was applied to capture

the uncertain, and causal relationship between the preconditions, goals and actions (the goals

were decomposed in multiple actions with many pre- and post-conditions). The Bayesian network

model consists of the action network and the ontology network. The action network was built from

the user’s natural language queries and relevant feedback on the results given by the system. It

was maintained on regular basis by a fading technique. The action network captures the user’s

79

interests, which are controlled in the ontology network. When the action network is faded, the

user’s actions that persist over time are inferred and copied to the ontology network. The ontology

network captures the information regarding the user’s long-term interests as well as the

information regarding the interrelation among the subjects that the user is looking for.

The utility model was developed to capture the user’s utility for having the active user

interface performing an action on his behalf to achieve a goal. It was used to support the

shifting in user long-term preferences and interests. The utility model contains: 1) the utility

function over a set of requirements for active user interface (UAUI_requirement); 2) a multi-

attribute utility function over a set of metrics that measure the adaptivity, autonomy,

collaboration, and robustness of the active user interface,; and 3) the utility function over a set

of requirements for capturing the user long-term interests and preferences

(ULONGTERM_requirement). This function was defined over a set of metrics that measure the

scope of knowledge, the rate of changes, the generality and specificity of the user's studying

style.

In described implementation of the user model, authors assumed that both of these utility

functions needs to look backwards in history to compute the utility function or an agent that

extends the user’s original queries by taking only the positive or both positive and negative

relevant feedback. The decision concerning how the interface agent will offer assistance and if

the observation will be included in the user’s long-term interest is based on three thresholds. One

of thresholds is for offering assistance, second for autonomously performing action on the user’s

behalf and the third one for the long-term interests. The thresholds definition was based on the

expected utility function. When the UAUI_requirement falls below the threshold of utility

requirement, the active user interface requests “help” from a set of correction adaptation agents.

The correction adaptation agent that is most likely to improve the interface agent’s requirement

utility will get the chance to correct the user model.

12.8 Adaptive interface for medical data management
Dynamic hot-lists were proposed to use in adaptive interface application for data entry of

electronic medical records (EMR) in a general practice (Spenceley et al., 1996). The hot lists

(split menu) offers selection of frequently used items in a top section of the menu and then gives

the remaining items in a bottom section. A split menu is named as intelligent when its top section

alters its values to suit factors of the current context. In this application, the hot list creation was

based on the task model formed by machine learning from the 3085 records of visits (Adelaide

General Practice database). In the database, the patients’ problems were coded using from the

GP’s electronic medical records system.

Conditional probability model were used for anticipation of drugs treatment based on the

co-occurrence of drugs with problems. In the training phase, matrix giving the probability for each

80

drug given each problem was computed from a subset of the database. The matrix constitutes

the task model. All drugs were ranked in descending order of probability based on the patient’s

already-specified diagnoses. The 12 most probable drugs will be shown as the hot list and then

list all drugs alphabetically beneath. For situations where one patient has multiple diagnoses it

would be ideal to look at the frequency of co-occurrence of particular drugs with specific sets of

diagnosis. An approximation mechanism from the fuzzy set theory for such joint conditional

probability was used:

P(z
1

v z
2

v ... v z
n
) ≡ max{ P(z

1
),P(z

2
),...,P(z

n
)}

The definition above was used as max operator for scoring candidates in the hot list. If a

patient has problems z1, z2, z3, drugs will be ordered according to their highest probability of

occurrence with on of the three problems at the hot list. The ‘add’ and ‘multi’ operators were also

considered, where each drug where scored by sum or product respectively, of its probabilities

with each of the problem present in the record. The ‘add’ operator rewards associations of drugs

with problems with cumulative fashion, while the ‘multi’ operator penalizes drugs that are weakly

associated with any of the problems present. Hit rate index were used to evaluate the model in

the simulation. Hit rate is the percentage of the drug from the hot list selected by user. The results

of the simulation revealed that: 1) the multi-method is inappropriate for the data, 2) small but

consistent advantage of the add method over the ‘max method’, and 3) the best hit rate- 68%

12.9 Adaptive user interfaces for stock trading
Yoo et al. (2003) developed the Stock Tracker, an adaptive user interface that

recommends stocks based on an individual’s trading profile. The system utilizes this profile to

rank stocks, and it revises the profile based on traces of user behavior. Authors emphasized that

stock tracking is a temporally sensitive task that requires the continuous monitoring of numeric

variables to detect trends or changes over time. This requires identifying features that capture

these trends and employing techniques to gather such information for the user. The Stock

Tracker is built on the client-server architecture, with information filtering, record keeping, and

adaptation performed on the server. The user interface and related computing are done on the

client (Figure 34).

81

Figure 34 – Architecture of the Adaptive Stick Trader (after Yoo, 2003)

The server contains: 1) the data processing unit, 2) recommendation module, 3) user

modeler, 4) information manager, 4) communication unit. The data processing unit converts raw

input (i.e., current stock readings and historical trading information) into reports that contain buy

and sell recommendations for the user. It relies on the recommendation module to make

appropriate suggestions for each stock based on individual user profiles. The user modeler

constructs these profiles based on user responses to previous recommendations. The information

manager records traces of a user’s interactions with the system and also keeps track of user

portfolios. The communication unit manages the information into and out of the server.

A client contains: 1) a communication unit, 2) a graphical user interface (GUI) component.

The communication unit performs activities that correspond to the server’s communication unit.

The GUI presents all reports to the user and accepts commands such as buying/selling stocks

and viewing portfolios, along with requests for additional financial information on particular

companies. The system simulates trading using historical S&P 500 market data; it mimics a real

stock-trading scenario by generating information one (simulated) day at a time and letting a trader

decide the stocks, if any, to buy and/or sell on each day.

The Stock Tracker includes a graphical interface for presenting stock information, making

recommendations, and accepting the user’s trading requests. The system’s ranked list of

recommendations appears in the upper left. Details about the highlighted stock are presented in

82

the interactive graph in the bottom half of the window. The upper right presents a summary of the

current stock, together with the system’s recommendation and action buttons for the user to buy

or sell the stock. The Stock Tracker’s interface was designed to obtain useful feedback through a

user’s natural interaction. A user can provide positive feedback by purchasing a stock that the

system recommends he should buy. By selling the same stock, the trader gives negative

feedback. Because more explicit feedback is also helpful, this facility was also provided, but the

Stock Tracker can adapt its behavior to users even without such information.

The system bases recommendations on a technical analysis called the Moving Average

Convergence Divergence (MACD) that examines the difference between long-term and short-

term moving averages to identify crossing points. These points indicate market turns and thus

correspond to opportunities for buying or selling stock. MACD was converted into decision

rules for recommending different actions: buy, buy warning, sell, sell warning, and do nothing.

Each decision rule consists of a set of numeric constraints on temporal stock-trading attributes,

such as the rate of increase in the long-term moving average or the difference between the

long-term and short-term averages. A decision rule applies when all of its constraints are

satisfied—that is, the value of each corresponding attribute satisfies the constraints with the

MACD defines the form of the constraints. The Stock Tracker alters its recommendation

behavior by incorporating different threshold values.

The Stock Tracker achieves personalized recommendation through the use of individual

user profiles that capture trading preferences. A profile consists of four binary classifiers, one for

every action other than do nothing, each of which renders a membership decision on each item

(i.e., whether it is a positive instance of the class). The system builds classifiers from training

examples extracted from traces of the user’s interactions. The user can either accept or reject

each recommendation. An acceptance indicates that the recommendation was correct and is thus

a positive example of the corresponding classifier. Similarly, a rejection produces a negative

example. The system also uses positive examples for one classifier as negative examples for

others. Although there are many well-known supervised induction algorithms, we opted to devise

a new, more efficient algorithm that exploits the fixed structure of the user model (Figure 35).

83

Learn (examples)

 For each classifier in {buy, buy warning, sell, sell warning}

 LearnOne (classifier, examples, classifier’s constraints)

LearnOne (classifier, examples, constraints)

• Sort examples in increasing order according to the attribute value of the next

constraint in constraints

• Identify threshold candidates for splitting the examples into positive and negative

regions

• Set constraints threshold of classifier to the best split among candidates based on

Evaluate (examples, split)

• LearnOne (classifier), Subset (examples, split), Remaining (constraints)

Figure 35 – Example of fixed structure of user model

Each decision rule (classifier) consists of a set of constraints, each of which corresponds

to a particular numeric attribute. Every constraint specifies a threshold on the attribute value,

above (below) which the constraint is satisfied. The goal of the learning algorithm is to find a set

of thresholds that will result in recommendations consistent with the user’s actions. The examples

were ordered according to increasing attribute values, to evaluate candidate thresholds for a ≥

constraint based on how well they predict positive examples above the threshold and negative

examples below it, and similarly for ≤ constraints. Also, since the constraints form a conjunctive

set of conditions, thresholds for remaining constraints need only be considered, for examples in

the region that satisfies the constraint.

The authors of this article found that the F measure, a weighted combination of precision

and recall, provided the best behavior for evaluating candidate splits. Precision indicated the

probability that a positive instance. labeled as positive by the classifier. is truly positive, whereas

recall gave the probability of correctly identifying all positive instances. In application, precision is

the number of positive examples in the correct partition divided by the number of instances in that

partition. Recall is the number of positive instances in the correct partition divided by the number

of positives in both partitions. The learning is conducted online, that is, after every interaction with

the user that yields positive or negative examples, the user modeler updates the user profile. This

lets the Stock Tracker adapt quickly to individual traders. To give the system a reasonable

starting point, a default model was employed, corresponding to the profile of an average user,

which was generated from a default training set that represented feedback from such a user. The

weight attached to these default cases allowed varying the degree to which the system relied on

them during its model construction.

84

13. CONCLUSIONS
Contemporary applications of the adaptive human-computer interfaces are spread across

a wide rage of different areas, including expert systems, knowledge system databases, World

Wide Web pages, tutoring systems, help systems, etc. Currently, the main focus of most of the

applications available in the subject literature is on the human user model construction, the

control mechanisms, and technical aspects of the interface architecture. However, the cognitive

aspects of the user models applied to drive the adaptation are in most cases intuitive and

underdeveloped. Furthermore, the knowledge about human information perception and

processing perspectives is seldom considered in the design of and information presentation on

the available adaptive displays.

In general, one can distinguish four generic elements common to all adaptive

interfaces, including: 1) the user model; 2) an adaptation (control) mechanism; 3) a system for

assessing the user state, and/or user-interface interaction state, and/or situation/task

demands; and 4) the domain model. It should be noted that in some applications the user

model consists of two parts: generic or standard user model, and specific (for each user)

model (that maintains the specific user features).

Although, there are quite a large number of theoretical papers discussing the above

issues in reference to the adaptive interface, these papers are predominantly from the human- or

user- oriented areas. At the same time, the literature regarding the design and construction of

adaptive interfaces is predominantly from the domain of computer science. These differences are

reflected in the variety of names used to designate the adaptive interfaces. An adaptive interface

implies an adaptation to the user in the human/user oriented areas, while an intelligent interface

emphasizes the interface intelligence in the context of computer science and engineering.

The information presentation in adaptive interfaces highly depends on the type and

area of application. However, the aims of all adaptive techniques applied are obviously the

same: to decrease the potential for or eliminate information overload, to present relevant

information at relevant moments in time, and finally to assist and improve user performance.

Some common generic factors that influence information presentation in adaptive

interfaces can be found. The most important factors that determine the way information is

presented are several changing over the time variables such as: user goals, state of user -

interface interaction, and task demand and/or situation demands. Two type of the interface

adaptability can be noticed: 1) dynamic (active), changing over the time (in some environments

very rapidly): adaptation to the effects of interactions between user actions and, task /situation;

and 2) passive (inactive): adaptation to the level of the user performance /ability/ knowledge

/workload, type of the situation/task.

In case of the passive adaptation the user/task/situation types can be predefined in the

interface knowledge base or in models. The dynamic/active adaptation demands analysis of

85

changing over the time interactions, history of interaction, and information important for these

interactions. In some applications with dynamic/active adaptivity the real time assessment of user

and/or situation were applied. The following user assessment indices were applied (assessment

of the user workload/ability/state): 1) direct physiological assessment: EEG, EKG, GSR, HR, and

2) indirect, situation based assessment of user information needs or workload and user

actions/input based.

The above review of literature indicates that aircraft flight and other dynamic systems

control design has been to a large extent dominated by the classical system control techniques.

While this tradition has produced many highly reliable and effective control systems, recent years

have seen a growing interest in applications of robust, nonlinear, adaptive control theory. The use

of artificial intelligence computational techniques has dominated in the last decade of control

research. This development has been motivated from the desire for enhanced agility and

functionality demands that the aircraft or other tactical system perform over an increased range of

operating conditions characterized by dramatic variations in dynamic pressure and nonlinear

dynamic phenomena. As it has been seen, artificial intelligence techniques have been effectively

used either individually or in combination for general aviation, military, or space aircraft attitude,

altitude, fault tolerance, angle of attack and other aerodynamic controls. At the same time, these

techniques have been successfully implemented in underwater vehicles, weapon systems, and in

tactical decision making. However, the review shows that many of the endeavors urge for future

research either to overcome limitations in the technology that is currently being used or to

develop and implement the technology in the new, challenging real world applications.

86

14. REFERENCES

Adams, R. J., and Banda, S. S., 1993, An integrated approach to flight control design using
dynamic inversion and Mu-synthesis, Proceedings of American Control Conference, 1385-
1389.

Amalberti, R., 1992, Reasoning model of fighter pilots, Int J Psychol, 27 (3-4): 604-604.

Amalberti, R., 1991, Decision-making under time-pressure in air combat missions, Med Armees,
19 (6): 359-362.

Amalberti, R. and Deblon, F., 1992, Cognitive modeling of fighter aircraft process-control - a step
towards an intelligent on-board assistance system, Int J Man Mach Stud, 36 (5): 639-671.

Amalberti, R. and Menu, J. P., 1985, One approach to optimum flow of information between man
and machine, Aviat Space Envir Md, 56 (5): 505-505.

An, P. E., Brown, M., Harris, C. J., Lawrence, A. J., and Moore, C. G., 1994, Associative memory
neural networks: Adaptive modelling theory, software implementations and graphical user
interface, Engineering Applications of Artificial Intelligence, 7(1), 1-21.

Andes, R. C. and Rouse, W. B., 1992, Specification of adaptive aiding systems, Inform Decis
Technol, 18 (3): 195-207.

Arai, F., Fukuda, T., Yamamoto, Y., Naito, T. Matsui, T., 1993, Interactive Adaptation on Interface
Monitoring and Assisting Operator Recursive Fuzzy Criterion, Proceedings of IEEE
International Workshop on Robot and Human Communication, 448-453.

Austin, K.J. and Jacobs, P.A., 2001, Application of genetic algorithms to hypersonic flight control,
Joint 9

th
 IFSA World Congress and 20

th
NAFIPS International Conference, 4, 2428 -2433, 25-

28 July.

Baus, J., Krüger, A., Wahlster W., 2002, A resource-adaptive mobile navigation system,
Proceedings of IUI2002: International Conference on Intelligent User Interfaces 2002,ACM
Press.

Begg, I.M.; Gnocato, J.; Haman, A., 1994, Architectural Issues in Real-Time Intelligent User
Interface Technology, IEEE Network Operations and Management Symposium, 3, 856 -866.

Bennett, K.B., Cress, J., Hettinger, L.J., Stautberg, D., Haas, M.W, 2001, A Theoretical Analysis
and Preliminary Investigation of Dynamically Adaptive Interfaces, International Journal of
Aviation Psychology, 11(2), 169-195.

Benyon D .R, Innocent P.R., Murray, D.M, 1987, System Adaptivity and the modeling of
stereotypes, INTERACT ’87, II IFIP Conference on HCI (Elsevier)

87

Boskovic, J. D. and Mehra, R. K., 1999, Stable multiple model adaptive flight control for
accommodation of a large class of control effector failures, American Control Conference,
June, 3, 1920-1924.

Brinker, J. S. and Wise, K. A., 1996, Stability and flying qualities robustness of a dynamic
inversion control law, AIAA Journal of Guidance, Control, and Dynamics, 19(6), 1270-1277.

Brown, S. M. and Santos, E., Jr., 1999, Active User Interfaces for Building Decision-Theoretic
Systems, Proceedings of the 1st Asia-Pacific Conference on Intelligent Agent Technology,
244-253, Hong Kong.

Brusilovsky, P., Schwarz, E., Weber, G.,1996, ELM-ART: An intelligent tutoring system on World
Wide Web. In Frasson, C., Gauthier, G., & Lesgold, A. (Ed.), Intelligent Tutoring Systems
(Lecture Notes in Computer Science, Vol. 1086). Berlin: Springer Verlag. 261-269.

Buffington, J. M., Adams, R. J., and Banda, S. S., 1993, Robust nonlinear high angle of attack
control design for a supermaneuverable vehicle, Proceedings of AIAA Guidance, Navigation,
and Control Conference, 690-700.

Buffington, J. M., Sparks, A. G., and Banda, S. S., 1993, Full conventional envelop longitudinal
axis flight control with thrust vectoring, Proceedings of American Control Conference, 415-
419.

Bugajski, D. J., Enns, D. F., and Elgersma, M. R., 1990, A dynamic inversion based control law
with application to the high angle of attack research vehicle, Proceedings of AIAA Guidance,
Navigation, and Control Conference, 20-22.

Burdun, I.Y. and Parfentyev, O. M. (1999), Fuzzy situational tree-networks for intelligent flight
support, Engineering Applications of Artificial Intelligence, 12, 523-541.

Caldwell, C.W., Martin, T.W., and Cheng, S.I., 1998, Automatic flight path control for
nondirectional beacon approach using neural networks, The 1998 IEEE International Joint
Conference on Neural Networks and Computational Intelligence, 2 , 980 -985, 4-9 May.

Campa, G., Fravolini, M.L., Napolitano, M., and Seanor, B., 2002, Neural networks-based sensor
validation for the flight control system of a B777 research model, Proceedings of the 2002
American Control Conference, 1, 412 -417, 8-10 May.

Catarci, T., Chang, S., -K., Costabile, M. F., M. F., Levialdi, M. F., Santucci, G., 1996, A Graph-
based Framework for Multiparadigmatic Visual Access to Databases, IEEE Transactions on
Data and Knowledge Engineering, 8 (3), 455-475.

Dardenne, I. and Ferreres, G., 1998, Design of a flight control system for a highly flexible aircraft
using convex synthesis, 21

st
 Congress fo the International Council of the Aeronautical

Sciences, 89-151, September, Melbourne, Australia.

Eberhardt, R. L. and Ward, D. G., 1999, Indirect adaptive flight control system interactions,
International Journal of Robust and Nonlinear Control, 9(14), 1013-1031.

88

Espinoza, F., Hook, K., 1996, An interactive WWW interface to an adaptive information system.
Paper presented at UM'96 Fazlollahi, B., Parikh, M. A., Verma S., 1997, Adaptive decision
support systems, Decision Support Systems, 20(4), 297-315.

Frey, P. R., Rouse, W. B., and Garris, R. D., 1992, Big graphics and little screens - designing
graphical displays for maintenance tasks, IEEE Tran Syst Man Cyb, 22 (1): 10-20.

Ganesh, C., 1999, Fuzzy logic-based information processing in submarine combat systems, 18th
International Conference of the North American Fuzzy Information Processing Society, 153-
157. 10-12 June.

Hancock, P.A., Chignell, M.H., 1988, Mental workload dynamics in adaptive interface design,
IEEE Transactions on Systems, Man and Cybernetics, 18/4 , pp. 647-658

Harrington, R. A., Banks, S., and Santos Jr., E., 1996, Development of an intelligent user
interface for a generic expert system, In Michael Gasser, ed., Online Proceedings of the
Midwest Artificial Intelligence and Cognitive Science Conference. URL:
http://www.cs.indiana.edu/event/maics96/Proceedings/harrington.html.

Hettinger, L. J.; Branco, P.; Encarnacao, L. M.; Bonato, P., 2003, Neuroadaptive technologies:
applying neuroergonomics to the design of advanced interfaces. Theoretical Issues in
Ergonomics Science, vol4, 1/2, pp., 220-238.

Hettinger, L. and Hass, M. (Eds.), 2003, Virtual and Adaptive Environments: Applications,
Implications, and Human Performance, New York: Lawrence Erlbaum.

Hilburn, B., Parasuraman, R., & Mouloua, M., 1995, Effects of short-and long-cycle adaptive
function allocation on performance of flight-related tasks,In N. Johnston, R. Fuller, & N.
McDonald (Eds.), Aviation psychology: Training and selection (pp. 347-353). Hampshire,
England: Ashgate.

Hook, K., 2000, Steps to take before intelligent user interfaces become real, Interacting with
Computers, 12/4, p., 409-426.

Houlier, S., J-Y, Grau and Valot, C., 2003, A human factors approach to adaptive aids, In:
Hettinger, L. and Hass, M. (Eds.), Virtual and Adaptive Environments: Applications,
Implications, and Human Performance, New York: Lawrence Erlbaum.

Hungenahally, S.K., 1995, Virtual cockpit: fuzzy neural networks in visual perception Proceedings
of IEEE International Conference on Neural Networks, 1, 27-31, 27 November.

Höök, K., Karlgren, J., Wærn, A., Dahlbäck, N., Jansson, C. G., Karlgren, K. and Lemaire, B.,
1996, ‘A glass box approach to adaptive hypermedia’. User Models and User Adapted
Interaction 6

Höök, K., Rudström, å. and Waern, A. (1997) Edited Adaptive Hypermedia: Combining Human
and Machine Intelligence to Achieve Filter, presented at the workshop: Flexible Hypertext, in
Southampton during the Hypertext conference in April 6 - 11th, 1997.

89

Huzmezan, M. and Maciejowski, J. M., 1998, Reconfigurable flight control of a high incidence
research model using predictive control, UKACC International conference on Control, 2(455),
1169-1174.

Idan, M., Johnson, M., Calise, A.J., and Kaneshige, J., 2001, Intelligent aerodynamic/propulsion
flight control for flight safety: a nonlinear adaptive approach, Proceedings of the 2001
American Control Conference, 4, 2918 -2923, 25-27 June.

Jeram, G. and Prasad, J.V.R., 2003, Tactile Avoidance Cueing for Pilot Induced Oscillation,
Atmospheric Flight Mechanics Meeting, 11-14 August, Austin, Texas.

Joshi, P. and Valasek, J., 1999, Direct Comparison of Neural Network, Fuzzy Logic, and Model
Predictive Variable Structure Vortex Flow Controllers," AIAA-99-4279-CP, Proceedings of the
AIAA Guidance, Navigation and Control Conference, Portland, OR, 9-11 August.

Kandogan, E. and Shneiderman, B.,1997, Elastic Windows: Evaluation of Multi-Window
Operations, Conference on Human Factors in Computing Systems : CHI 97 Electronic
Publications

Kanellakopolous, I, Kokotovic, P. V., and Morse, A. S., 1991, Systematic design of adaptive
controllers for feedback linearizable systems, IEEE Trans. Automat. Contr., 36(11), 1241-
1253.

Keeble R.J. and Macredie R.D., 2000, Assistant agents for the World Wide Web intelligent
interface design challenges, Interacting with Computers-12(4), 357-381.

Kewley, R.H., Jr. and Embrechts, M.J., 1998, Fuzzy-genetic decision optimization for positioning
of military combat units, IEEE International Conference on Systems, Man, and Cybernetics,
4, 3658 -3663, 11-14 Oct.

Kokotovic, P. V., 1992, The joy of feedback: nonlinear and adaptive, IEEE Control Systems,
12(3), 7-17.

Kolski, C., Le Strugeon, E., Tendjaoui, M., 1993,Implementation of AI techniques for "intelligent"
interface development, Engineering Applications of Artificial Intelligence, 6(4), 295-305. Korn,
B. and Hecker, P., 2002, Enhanced and synthetic vision: increasing pilot's situation
awareness under adverse weather conditions, Proceedings of the 21

st
 Digital Avionics

Systems Conference, 2, 11C2-1 – 11C2-10, 27-31 October.

Kroft, P. D. and Wickens, C. D., 2001, Integrating aviation databases: Effects of scanning, clutter,
resolution, and interactivity, Proceedings of the 11th International Symposium on Aviation
Psychology, Columbus, OH: Dept. of Aerospace Engineering, Applied Mechanics, and
Aviation, Ohio State University.

Krstic, M., Kanellakopoulos, I., and Kokotovic, P. V., 1995, Nonliear and adaptive control design,
Wiley: New York.

90

Krstic, M., Sun, J., and Kokotovic, P. V., 1994, Control of feedback linearizable systems with input
unmodeled dynamics, Proceedings of the 33

rd
 Conference on Decision and Control, 1633-

1638.

Kühme, T., 1993, User-centered approach to adaptive interfaces, Knowledge-Based Systems,
6/4, pp. 239-248.

Langley, P., 1998, User modeling in adaptive interfaces, Proceedings of the Seventh International
Conference on User Modeling, Banff, Alberta, pp. 357-370.

Le Gorrec, Y., Magni, J., Doell, C., and Chiappa, C., 1998, Modal multimodel control design
approach applied to aircraft autopilot design, Journal of Guidance, Control, and Dynamics,
21, 77-83.

Leitner, J., Calise, A., and Prasad, J.V.R., 1998, A full authority helicopter adaptive neuro-
controller, Proceedings of IEEE Aerospace Conference, 2, 117-126, 21-28 March.

Looye, G., Varga, A., Moormann, D., Gruebel, G., and Bennani, S., 1998, Robustness analysis
applied to autopilot design. I – Mu-analysis of designentries to a robust flight control,
Proceedings of 21

st
 ICAS Congress.

Manry, M.T., Cheng-Hsiung, H., and Chandrasekaran, H., Near-optimal flight load synthesis
using neural nets, Proceedings of the 1999 IEEE Signal Processing Society Workshop and
Neural Networks for Signal Processing IX, 535 -544, 23-25 Aug.

Marin, J.A., Radtke, R., Innis, D., Barr, D.R., and Schultz, A.C., 1999, Using a genetic algorithm
to develop rules to guide unmanned aerial vehicles, IEEE International Conference on
Systems, Man, and Cybernetics, 1, 1055-1060, 12-15 Oct.

Marrenbach J. and Kraiss, K.-F.,2000, Advanced Flight Management System: A New Design and
Evaluation Results. HCI-Aero 2000 - International Conference on Human-Computer
Interaction in Aeronautics, September 27-29, 2000, Toulouse, France

Melin, P. and Castillo, O., 2002, Intelligent control of aircraft dynamics systems with a new hybrid
neuro-fuzzy-fractal approach, Information Sciences, 142, 161-175.

Menu, J. P., Amalberti, R., and Santucci, G., 1986, The Concept of Intermediate Display, Aviat
Space Envir Md, 57 (5): 508-508.

Menu, J. P. and Amalberti, R., 1988, Time pressure (TP) effects information acquisition from
head-up (HUD) and head-down (HDD) displays, Aviat Space Envir Md, 59 (5): 483483.

Menon, P. K. A., Catterji, G. B., and Cheng, V. H. L., 1991, A two-time-scale autopilot for high
performance aircraft, Proceedings of AIAA Guidance, Navigation, and Control Conference.

Meyer, G. and Cicolani, L., 1980, Application of nonlinear systems inverses to automatic flight
control design system concepts and flight evaluations, AGARDograph AG-251 on Theory and
Applications of Optimal Control in Aerospace systems, NATO, 10-1 – 10-29.

91

Millán, J. del R. Mouri no, J., 2003, Asynchronous BCI and Local Neural Classifiers: An Overview
of the Adaptive Brain Interface Project, IEEE Trans. on Neural Systems and Rehabilitation
Engineering, Special Issue on Brain-Computer Interface Technology, 11(2).

Morris, N. M., Rouse, W. B., and Ward, S. L., 1988, Studies of dynamic task allocation in an
aerial search environment, IEEE Tran Syst Man Cyb, 18 (3): 376-389.

Mulgund, S. S., and Zacharias, G. L., 1996, A situation-driven adaptive pilot/vehicle interface,
Proceedings of the Third Annual Symposium on Human Interaction with Complex Systems,
193-198.

Mulgund, S., Harper, K., Krishnakumar, K., and Zacharias, G., 1998, Air combat tactics
optimization using stochastic genetic algorithms, IEEE International Conference on Systems,
Man, and Cybernetics, 4, 3136 -3141, 11-14 Oct.

Mulgund, S., Rinkus, G., Illgen, C., Zacharias, G., and Friskie, J., 1997, OLIPSA: online intelligent
processor for situation assessment, the 2

nd
 Annual Symposium and Exhibition on Situational

Awareness in the Tactical Air Environment, June 3-4, Patuxent River, MD.

Napolitano, M.R., Cnsanova, J.J., Windon, D.A., II., Seanor, B., and Martinelli, D., 1999, Neural
and fuzzy reconstructors for the virtual flight data recorder, IEEE Transactions on Aerospace
and Electronic Systems, , 35(1), 61 -71.

Napolitano, M.R., Molinaro, G., Innocenti, M., Seanor, B., and Martinelli, D., 1999, A complete
hardware package for a fault tolerant flight control system using online learning neural
networks, Proceedings of the 1999 American Control Conference, 4, 2615 -2619 , 2-4 June.

Nguyen, H., Saba, G. M., Santos, E., Jr., and Brown, S. M., 2000, Active User Interface in a
Knowledge Discovery and Retrieval System, Proceedings of the 2000 International
Conference on Artificial Intelligence (ICAI '2000), Las Vegas, NV.

Nyongesa, H.O., Kent, S., and O’Keefe, R., 2001, Genetic programming for anti-air missile
proximity fuze delay-time algorithms, IEEE AES Systems Magazine, 41-45.

Oosterom, M. and Babuska, R., 2000, Virtual sensor for fault detection and isolation in flight
control systems - fuzzy modeling approach, Proceedings of the 39th IEEE Conference on
Decision and Control, 3, 2645-2650, 12-15 Dec.

Öquist, G., Goldstein, M., 2003, Towards an improved readability on mobile devices: evaluating
adaptive rapid serial visual presentation, Interacting with Computers, 15(4),

539-558.

Oussedik, S., Delahaye, D., and Schoenauer, M., 2000, Alternative flight route generator by
genetic algorithms, Proceedings of the 2000 Congress on Evolutionary Computation, 2, 896 -
901, 16-19 July, Parasuraman, R., 2002, Adaptive Automation Matched to Human Mental
Workload, NATO Advanced Research Workshop on Operator Functional Assessment and
Impaired Performance in Complex Work, Il Ciocco, Italy, April 3-7, 2002

92

Piechulla, W., Mayser, C., Gehrke H., König, W., 2003, Reducing drivers' mental workload by
means of an adaptive man–machine interface, Transportation Research Part F: Traffic
Psychology and Behaviour, In Press, Corrected Proof, Available online 16 September 2003,

Pope, A. T., Bogart, E. H., & Bartolome, D. S., 1995, Biocybernetic system validates index of
operator engagement in automated task, Biological Psychology, 40, 187-195.

Prinzel, L.J., Freeman, F. G., Scerbo, M. W., Mikulka, P. J., Pope, A. T., 2000, A Closed-Loop
System for Examining Psychobiological Measures for Adaptive Task Allocation, International
Journal of Aviation Psychology, Vol. 10/4, 393-410.

Rong, J., 2002, Intelligent Executive Guidance Agent for Free Flight, 40th AIAA Aerospace
Sciences Meeting & Exhibition, 14-17 January, Reno, NV.

Rothrock, L., R. Koubek, F. Fuchs, M. Haas, and G. Salvendy, (2002) Review and Reappraisal of
Adaptive Interfaces: Toward Biologically-Inspired Paradigms, Theoretical Issues in
Ergonomics Science 3(1), 47-84

Rouse, W.B., Geddes, N.D. and Curry, R.E. (1988). Architecture for intelligent interfaces:Outline
of an approach to supporting operators of complex systems, Human-Computer Interaction,
3(2), 87-122.

Rouse, W. B., Geddes, N. D., and Hammer, J. M., 1990, Computer-Aided Fighter Pilots, IEEE
Spectrum, 27 (3): 38-41.

Rouse, W. B., 1988, Adaptive aiding for human computer control, Human Factors, 30 (4): 431-
443.

Saiwaki, N.; Togashi, H.; Tsujimoto, H.; Nishida, S., 1996, An adaptive interface based on
physiological indices, Systems, Man, and Cybernetics, IEEE International Conference on,
vol.4, 14-17 Oct. 1996, p., 2793 –2798.

Sastry, S. S. and Isidori, A., 1989, Adaptive control of linearizable systems, IEEE Trans. Automat.
Contr., 34(11), 1123-1131.

Scallen, S. F., Hankock, P.A., 2001, Implementing Adaptive Function Allocation, International
Journal of Aviation Psychology, 11/2, 197-221.

Schram, G., Verschoor, B., Sousa, J.M., and Verbruggen, H.B., 1997, Flight control
reconfiguration using multiple fuzzy controllers, Proceedings of the Sixth IEEE International
Conference on Fuzzy Systems, 1, 111-117, 1-5 July.

Siebra, S. de A., Ramalho, G.L., 1999, Athena: An User-Centered Adaptive Interface,
Proceedings of 8th International Conference on Human-Computer Interaction (HCI'99) Smith,
J., Walters, R.V., Goodson, W.L., and Stites, R., 1991, An artificial neural network model of
certain aspects of fighter pilot cognition, IEEE International Conference on Systems, Man,
and Cybernetics, 3, 1545-1550, 13-16 October.

93

Snell, S. A., Enns, D. F., and Garrard, W. L., 1992, Nonlinear inversion flight control for a

supermaneuverable aircraft, AIAA Journal of Guidance, Control, and Dynamics, 15(4), 976-
984.

Spenceley, S.E., Warren, J.R, Mudali S.K, Kirkwood, I.D., 1996, Intelligent Data Entry by Machine
Learning of an Anticipative Task Model, Proceedings of the Australian and New Zealand
Conference on Intelligent Information Systems.

Soulard P., 1992, Self-adaptive interfaces and multi-modal human interaction for combat
systems, Undersea Defense Technology, London, http:// www.artis-
acta.com/ARTIS/92UDT/92UDT.HTML

Takahashi, M.; Tsuyoshi, A.; Kuba, O.; Yoshikawa, H., 1994, Experimental study toward mutual
adaptive interface, Robot and Human Communication, RO-MAN '94 Nagoya, Proceedings,
3rd IEEE International Workshop on, 18-20 July 1994, p, 271 -276

Tannen, R. S., Nelson, W. T., Bolia, R. S., Haas, M. W., Warm, J. S., Hettinger, L. J., Dember, W.
N., Stoffregen, T. A., 2000, Adaptive integration of helmet-coupled multisensory displays for
target localization, Proceedings of the IEA 2000/HFES 2000 Congress, 3, 77–80.

Terrence S. Abbott, 1997, A Comparison of Two Control Display Unit Concepts on Flight
Management System Training, NASA TM-4744, January 1997, pp. 9

Tolle, H. and Ersfi, E., 1992, Neurocontrol: learning control systems inspired by neuronal
architectures and human problem solving, Lecture Notes in Control and Information Sciences
172. Springer: New York.

Urnes, Sr., J., Davidson, R., and Jacobson, S., 2001, A damage adaptive flight control system
using neural network technology, Proceedings of the 2001 American Control Conference, 4,
2907 -2912, 25-27 June.

Vachtsevanos, G. Kim, W., Al-Hasan, S., Rufus, F., Simon, M., Shrage, D., and Prasad, J.V.R.,
1997, Autonomous vehicles: from flight control to mission planning using fuzzy logic
techniques, 13th International Conference on Digital Signal Processing Proceedings, 2, 977-
981, 2-4 July.

Viano, G., Parodi, A., Alty, J. L., Khail, C., Biglino, I. A. D., Crampes, M., Vaudry, C., Daurensan,
V., Lachaud, P., 2000, Adaptive User Interface for Process Control based on Multi Agent
Approach. Advanced Visual Interfaces, 201-204.

Vico, F. J., Mir, P., Veredas, F.J., de La Torre, J., 2001, Animal-like adaptive behavior, Artificial
Intelligence in Engineering, 15/1, p. 5-12.

Wahi, P., Raina, R., and Chowdhury, F.N., 2001, A survey of recent work in adaptive flight
control, Proceedings of the 33

rd
 Southeastern Symposium on System Theory, 7-11, 18-20

March.

94

Warwick, K., 1996, Intelligent adaptive control, in M. M. Gupta and N. K. Sinha (Eds), Intelligent
Control Systems, IEEE Press: New York, 63-85.

Wickens, C.D. (1992). Engineering Psychology and Human Performance (2nd ed.). New York:
Harper Collins.

Wills, L., Kannan, S., Sander, S., Guler, M., Heck, B., Prasad, J.V.R., Schrage, D., and
Vachtsevanos, G., 2001, An open platform for reconfigurable control, IEEE Control Systems
Magazine, 21(3), 49 -64.

Wu, S. –F., Engelen, C.J.H., Babuska, R., Chu, Q. –P., and Mulder, J.A., 2003, Fuzzy logic
based full-envelop autonomous flight control for an atmospheric re-entry spacecraft, Control
Engineering Practice, 11, 11-25.

Yan, L, Sundararajan, N., and Saratchandran, P., 1999, Fault tolerant flight controller using
minimal resource allocating neural networks (MRAN), Proceedings of the 1999 American
Control Conference, 4, 2605 -2609, 2-4 June.

Yoneda, M., Arai, F., Fukuda, T., Miyata, K., Naito, T., 1996, Multimedia tele-operation of crane
system supported by interactive adaptation interface, Robot and Human Communication, 5th
IEEE International Workshop on, 11-14 Nov. 1996, p. 135 –140

Yoo, J., Gervasio, M., Langley, P., 2003, An Adaptive Stock Tracker Personalized trading advise,
Proceedings of the International Conference on Intelligent User Interfaces, Miami, Florida, pp.
197-203.

Yoon, W. C., Kim, Y.S., 1996, Aiding the analysis of human actions in large-scale systems: an
intelligent interface approach, Computers & Industrial Engineering, Volume 30, Issue 3, July
1996, Pages 569-577

Zames, G., 1998, Adaptive control: towards a complexity-based general theory, Autometica,
34(10), 1161-1167.

Zein-Sabatto, S.; Yixiong Z., 1997, Intelligent flight controllers for helicopter control, International
Conference on Neural Networks, 2, 617 -621, 9-12 June.

Zhou, Z. Lin, C.-F., and Burken, J., 1997, Fuzzy logic based flight control system for hypersonic
transporter, Proceedings of the 36th IEEE Conference on Decision and Control, 3, 2730-
2735, 10-12 Dec.

95

APPENDIX A.

Reference Type of control Application Input Output Architecture
Zhou et al.,
1997

Flight control Hypersonic
transporter

1. Angle of attack
2. Pitch rate

Stability in
hypersonic
region
Robustness
across flight
envelop

Fourteen fuzzy
inference rules
Max-min
composition
algorithm

Schram et al.,
1997

Failure-tolerant
control

Civil aircraft
simulation

Measurements:
1. Sensor failure
2. Actuator failure

Flight path:
1. Lateral
deviation
2. Roll angle
3. Sideslip

Multiple Fuzzy
Controllers:
1. Dynamic
filter and
scaling
2. Fuzzification
3. Inference
mechanism
4.
Defuzzification

Vachtsevanos
et al., 1997

Flight control
and mission
planning

Autonomous UAV Route Planner:
1. Distance
2. Hazard
3. Maneuverability
Navigation:
1. Waypoints
2. Energy management
Fault-tolerance:
1. Sensor failure
2. Component failure

Longitudinal
Lateral
Vertical
Yaw
Pitch
velocity and
control

1. Mission
Planner:
- Supervisory
controller
- Route planner
 - Fault
tolerance
- Fuzzy
navigator
2. Flight
controller

Oosterom and
Babuska,
2000

Implementation
of virtual sensor
for normal
acceleration

Small commercial
aircraft

Dissimilar consolidated
sensor readings:
1. Longitudinal motion
2. Sensor noise
3. Atmospheric
turbulence

Normal
acceleration

Data
Generation
-Training data
- Validation
data
2. Fuzzy
clustering
identification
-Takagi-
Sugeno
model

Napolitano et
al., 1999

Development of
virtual flight data
recorder

Commercial aircraft Pitch, bank, and
heading angles,
altitude, airspeed,
accelerations

Control
surface
deflections

1. Neural
network
simulator:
-Multilayer
- Back
propagation
learning
algorithm
2. Fuzzy Logic
- Fuzzification
- Inference
- Composition
-
Defuzzification

Burdun and
Parfentyev,
1999

Intelligent flight
support

Intelligent pilot-
vehicle interface,
automatic flight-
envelope protection,
autonomous
(robotic) flight
including multiple
vehicle systems,
and resolution of

Pilot errors,
nonstandard flight
profile or maneuvers,
mechanical failures,
wind and turbulence,
weather and extreme
atmospheric conditions,
electromagnetic
discharges, extreme

 1. Flight event
2. Elementary
situation
3. Flight
situation
scenario
4. Fuzzy
situation tree-
network

96

conflicts in close
free-flight air space
(Potential)

runway conditions - Linguistic
flight variables
- Fuzzy
measurement
scales
 - Fuzzy
situations
 - Fuzzy
Transitions
- Fuzzy
branches

Jeram and
Prasad, 2003

Active control
system

Rotorcraft 1. Dominant frequency,
2. Phase lag, and 3.
Actuator rate limit
4. Friction,
5. Radius of motion
6. Bobweight dynamics

Pilot induced
oscillation

1. Cockpit
control
2. Aircraft state
3. Actuator
position
4. Main
frequency
selection
5. Fuzzy
Inference
system
6. PIO
estimation

Rong, 2002 Optimal and
conflict-free flight
path guidance

 1. Weather
2. Traffic

Flight path 1. Executive
agent
- Rule-based
arbitrator
- Traffic conflict
evaluator
2. Weather
agent
3. Traffic agent

Wu et al.,
2003

Intelligent and
autonomous
flight control
system

Re-entry space
vehicle

1. Pitch
2. Roll
3. Yaw

Flight
trajectory: 1.
Angle of
attack
2. Sideslip
angle
3. Bank
angle

1. Fuzzy
controller
2. Aerodynamic
inversion
3. X38
simulator

97

APPENDIX B.

References Type of
control

Application Input Output Architecture

Caldwell et
al., 1998

landing
approach
navigation aid

Commercial
aircraft

1. Autopilot:
 - Distance -
Bearing
- Heading –
Airspeed
 - Altitude
2. Approach:
- Inbound course
- Turn course
- Distance
3. Wind Settings:
 - Velocity
 - Direction

1. Drift heading
2. Relative bearing

Feed forward network
One hidden layer with
three nodes Back
propagation learning
algorithm

Napolitano
et al., 1999

Fault-
tolerance
control

Military
aircraft

1. Elevator,
aileron, and

rudder
2. Pitch, roll, and

yaw rates

Sensor and actuator
failure:
- Detection
- Identification
 - Accommodation

1. Actuator -NN to
estimate
angular velocity
(detection)
 - Failure identification
through cross-correlation
functions
- NN controllers for pitch,
roll, and yaw controls
2. Sensor
-A main NN (MNN)
 -A set of ‘n’ NNs,
decentralized for
‘n’ sensors

Manry et al., near optimal
helicopter
flight
load synthesis
(FLS)

Helicopter 1. CG F/A load
factor
2. CG lateral
load factor
3. CG normal
load factor
4. Pitch Attitude
and rate
5. Roll attitude
and rate
6. Yaw rate
7. Corrected
airspeed
8. Rate of climb
9. Longitudinal
cyclic stick
position
10. Pedal
position
11. Collective
stick position
12. Lateral cyclic
stick position
13. Main rotor
mast torque
14. Density ratio
15. F/A
acceleration,
transmission
 16. Lateral
acceleration,
transmission
17. Vertical
acceleration,
transmission
18. Left hand

1. Fore/aft cyclic
boost
tube oscillatory axial
load (OAL)
2. Lateral cyclic
boost tube OAL
3. Collective boost
tube OAL
4. Main rotor (MR)
pitch link OAL
5. MR mast
oscillatory
perpendicular
bending st.
6. MR yoke
oscillatory beam
bending sta.
7. MR blade
oscillatory beam
bending sta.
8. MR yoke
oscillatory chord
bending sta.
9. Resultant mast
bending sta. position

1. Modular neural
network
2. Cramer-Rao
Maximum
 a -posteriori bounds
3. Multilayer perceptron
network

98

forward and aft
pylon links
19. Right hand
forward and aft
pylon links

Yan et al.,
1999

Fault tolerant
flight
controller

Fighter
aircraft

1. Pilot pitch rate
2. Velocity
commands

1. Pitch rate
2. Actuator
sluggishness
3. Velocity

1. PID controller
2. MRAN controller
3. Plant

Urnes et al.,
2001

Damage
adaptive flight
control system

Fighter
aircraft

1. Mach
2. Altitude
3. Alpha
4. ABS
5. Collective
Stab
6. Collective
rudder
7. Differential
aileron

99

APPENDIX C.

 References Type of control Application Input Output Architecture
Oussedik et
al., 2000

Air traffic route
generator

Air traffic
control

1. Airspace beacons
2. Airspace sectors

Minimum distance
alternative routes

1. Coding
2. Mutation
3. Crossover
4. Sharing

Austin and
Jacobs,
2001

Longitudinal
flight control

Hypersonic
aircraft

1. Attitude
2. Flight trajectory

Configure the control
surface, along with a
fixed and preset
control structure

1. Initial evolutionary
reproduction process
2. Floating point
encoding
3. Sigma-truncation
and linear scaling
fitness function
4. Uniform arithmetic
crossover with
adaptive direction of
mutation

Mulgund et
al., 1998

Optimization of
large-scale air
combat tactics

Fighter
aircrafts

1. A set of
commonly-used
element and division
formation along with
underlying tactical
maneuvers
and attack tactics 2.
A set of principles for
aggregating the
small formation

tactics for large
engagements

1. Individual
maneuverability
 2. Formation tactics
3. Division tactics

1. Stochastic coding
2. Tactics
implementation
3. Fitness function on
the basis of
friend/enemy loss,
separation criteria,
relative advantage,
and risk assessment

Marin et al.,
1999

Guidance Unmanned
aerial
vehicle

Terrain data on
vegetation, slope,
hydrology, roads,
and
obstacles

Detection and
monitoring of targets

SAMUEL evolutionary
learning system

Nyongesa et
al., 2001

Control of
delay-
time of anti-air
missile

Ground
anti-air
missile
vehicle

1. Missile angle
2. Missile distance

Optimization of delay
time of fuze to kill the
target

1. A set of eight
functions
2. A set of three
terminals
3. Genetic
programming
parameters;
population, generation,
mutation, migration
frequency and rate
 4. Fitness as success
predicate

100

APPENDIX D.

 References Type of control Application Input Output Architecture
Zein-Sabatto and
Zheng, 1997

Intelligent flight
control

XCell-30 mini
helicopter

1. Flight altitude
2. Rotor speed
3. Blade angle
4. Aerodynamic
theory

1. Rotor speed
2. Blade angle

1. A three-layer
feedforward NN:
to learn
helicopter
dynamics
2. Genetic
algorithms: to
optimize
coefficients for
PID controller
3. PID controller:
blade angle
control
4. Fuzzy
controller: rotor
speed control

Idan et al., 2001 Fault-tolerant
control

Numerical model
of B 777

Aerodynamic and
propulsion
actuator failure
information

Control of:
 -Speed
 -Pitch rate
-Thrust

1. Online Neural
network to learn
fault tolerance
2. Pseudo-control
hedging to
address
adaptation
difficulties
3. Nonlinear
single hidden
layer NN to
compensate for
inversion error

Joshi and
Valasek,
1999

Bang-bang type
vortex flow
control

X-29A 1. Angle of attack
2. Sideslip angle
3. Deflection
4. Bank angle
5. Heading angle

1. Close-loop
system
performance
2. Activity level of
VFC nozzles
3. Ease of
controller
synthesis
4. Time required
to synthesize
controller

1. Model
predictive
variable structure
2. Fuzzy logic
3. Neural
networks

Melin and
Castillo, 2002

Aircraft dynamics
control

General 1. Wind velocity
2. Inertia moment

1. Altitude
2. Trajectory
estimation

1. Fractal module
2. Fuzzy rule
base for
modeling
3. NN for control
4. NN for
identification
5. Aircraft
dynamic
system

Kewley and
Embrechts (1998

Positioning
military combat
units for optimum
performance

Military ground
units

1. Organization
and course of
action data
2. Vehicle data
3. Map data

Estimation of
enemy and
friendly losses

1. A simulation
model to
evaluate
solutions
 2. A fuzzy logic
module to map
simulation
outputs
3. A genetic
algorithm to
search the terrain
for near-optimal
combination of

101

unit
positions

Ganesh, 1999 Uncertainty
management

Submarine 1. Platform
identification
2. Normalized
blade-rate

Contact speed 1. Two input
single output
speed fuzzy
inference system
2. Target motion
analysis

Wills et al., 2001 Control of
complex system

X-cell helicopter 1. Outer loop:
flight trajectory
2. Inner loop:
pitch, roll, and
yaw

1. High level
control: situation
awareness,
reactive control,
and model
selection
2. Mid level
control:
mode transition

3. Low level
control:
stability and
control, and
augmentation
system
4. Open control
platform with
multiplayer
application
programmer
interfaces
5. PID controller
8. Neural network
based controller

Leitner et al.,
1998

Trajectory
tracking control

Rotorcraft 1. Outer loop:
pitch and roll
2. Inner loop:
moment controls
of lateral and
longitudinal
cyclic, and tail
rotor collective
pitch

1. PID controller
2. Neural network
based controller

102

